An Effective Approach of Named Entity Recognition for Cyber Threat Intelligence

Han Wu, Xiaoyong Li, Yali Gao
{"title":"An Effective Approach of Named Entity Recognition for Cyber Threat Intelligence","authors":"Han Wu, Xiaoyong Li, Yali Gao","doi":"10.1109/ITNEC48623.2020.9085102","DOIUrl":null,"url":null,"abstract":"Traditional methods of domain named entity recognition (NER) rely on manually-defined feature templates and domain experience. Aiming at domain NER task of unstructured cyber threat intelligence (CTI), this paper proposed an approach based on BiLSTM-CRF model and domain dictionary matching correction. This approach utilizes bi-directional Long Short-Term Memory (BiLSTM) to automatically capture features of context, Conditional Random Fields (CRF) to learn label constraint rule, and an ontology-based domain dictionary for matching correction. Due to the lack of available domain dataset, this paper adopts the pre-processed unstructured CTI text as dataset for domain NER experiment. The experimental results show that the proposed approach reaches 85% in F1 score, and can significantly reduce reliance on manually-defined features.","PeriodicalId":235524,"journal":{"name":"2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNEC48623.2020.9085102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Traditional methods of domain named entity recognition (NER) rely on manually-defined feature templates and domain experience. Aiming at domain NER task of unstructured cyber threat intelligence (CTI), this paper proposed an approach based on BiLSTM-CRF model and domain dictionary matching correction. This approach utilizes bi-directional Long Short-Term Memory (BiLSTM) to automatically capture features of context, Conditional Random Fields (CRF) to learn label constraint rule, and an ontology-based domain dictionary for matching correction. Due to the lack of available domain dataset, this paper adopts the pre-processed unstructured CTI text as dataset for domain NER experiment. The experimental results show that the proposed approach reaches 85% in F1 score, and can significantly reduce reliance on manually-defined features.
面向网络威胁情报的命名实体识别方法
传统的域名实体识别方法依赖于人工定义的特征模板和领域经验。针对非结构化网络威胁情报(CTI)的领域NER任务,提出了一种基于BiLSTM-CRF模型和领域字典匹配校正的方法。该方法利用双向长短期记忆(BiLSTM)自动捕获上下文特征,利用条件随机场(CRF)学习标签约束规则,利用基于本体的领域字典进行匹配校正。由于缺乏可用的领域数据集,本文采用预处理后的非结构化CTI文本作为领域NER实验的数据集。实验结果表明,该方法F1得分达到85%,显著降低了对人工定义特征的依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信