Belief propagation with Gaussian approximation for joint channel estimation and decoding

Yang Liu, L. Brunel, J. Boutros
{"title":"Belief propagation with Gaussian approximation for joint channel estimation and decoding","authors":"Yang Liu, L. Brunel, J. Boutros","doi":"10.1109/PIMRC.2008.4699839","DOIUrl":null,"url":null,"abstract":"In order to increase the performance of joint channel estimation and decoding through belief propagation on factor graphs, we approximate the distribution of channel estimate in the factor graph as a mixture of Gaussian distributions. The result is a continuous downward and upward message propagation in the factor graph instead of discrete probability distributions. Using continuous downward messages, the computation complexity of belief propagation is reduced without performance degradation. With both continuous upward and downward messages, belief propagation almost achieves the same performance as expectation-maximization under good initialization and outperforms it under bad initialization.","PeriodicalId":125554,"journal":{"name":"2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC.2008.4699839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In order to increase the performance of joint channel estimation and decoding through belief propagation on factor graphs, we approximate the distribution of channel estimate in the factor graph as a mixture of Gaussian distributions. The result is a continuous downward and upward message propagation in the factor graph instead of discrete probability distributions. Using continuous downward messages, the computation complexity of belief propagation is reduced without performance degradation. With both continuous upward and downward messages, belief propagation almost achieves the same performance as expectation-maximization under good initialization and outperforms it under bad initialization.
联合信道估计与译码的高斯近似置信传播
为了通过因子图上的信念传播提高联合信道估计和译码的性能,我们将信道估计在因子图中的分布近似为高斯分布的混合分布。其结果是在因子图中连续的向下和向上的消息传播,而不是离散的概率分布。使用连续向下的消息,在不降低性能的前提下降低了信念传播的计算复杂度。在连续向上和向下消息的情况下,信念传播在良好初始化条件下几乎达到与期望最大化相同的性能,在糟糕初始化条件下优于期望最大化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信