Optimized Logarithmic Barrel Shifter in Reversible Logic Synthesis

Sajib Kumar Mitra, A. Chowdhury
{"title":"Optimized Logarithmic Barrel Shifter in Reversible Logic Synthesis","authors":"Sajib Kumar Mitra, A. Chowdhury","doi":"10.1109/VLSID.2015.80","DOIUrl":null,"url":null,"abstract":"Reversible logic attains the dominance in the realm of overwhelming research in logic synthesis and also has the significance in the context of quantum computing because of loss-less information processing. Due to low power dissipation, researchers are first designing smaller components with reversible gates, that eventually lead to design reversible computer. In this paper, we propose a robust architecture of logarithmic barrel shifter that performs bidirectional arithmetic and logical shifting, including rotate operation. Incorporating fault tolerance capability, the circuit is designed very efficiently that exhibits superior performance over state-of-the-art design methods in terms of minimum number of gates, garbage outputs, ancilla inputs, quantum cost, delay and others cost factors.","PeriodicalId":123635,"journal":{"name":"2015 28th International Conference on VLSI Design","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 28th International Conference on VLSI Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSID.2015.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Reversible logic attains the dominance in the realm of overwhelming research in logic synthesis and also has the significance in the context of quantum computing because of loss-less information processing. Due to low power dissipation, researchers are first designing smaller components with reversible gates, that eventually lead to design reversible computer. In this paper, we propose a robust architecture of logarithmic barrel shifter that performs bidirectional arithmetic and logical shifting, including rotate operation. Incorporating fault tolerance capability, the circuit is designed very efficiently that exhibits superior performance over state-of-the-art design methods in terms of minimum number of gates, garbage outputs, ancilla inputs, quantum cost, delay and others cost factors.
可逆逻辑合成中优化的对数移桶器
可逆逻辑在逻辑综合的压倒性研究领域中占据主导地位,并且由于信息的无损处理而在量子计算领域具有重要意义。由于功耗低,研究人员首先设计具有可逆门的较小元件,最终设计出可逆计算机。在本文中,我们提出了一种鲁棒的对数桶移位器结构,它可以进行双向算术移位和逻辑移位,包括旋转运算。结合容错能力,该电路的设计非常有效,在最小门数、垃圾输出、辅助输入、量子成本、延迟和其他成本因素方面,比最先进的设计方法表现出优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信