Computational fluid dynamics modelling for refining component design: AEM: Advanced equipment and material processes

J. Geiger, R. Aliev, Howard Base, Joel Rozga, M. Ibraham
{"title":"Computational fluid dynamics modelling for refining component design: AEM: Advanced equipment and material processes","authors":"J. Geiger, R. Aliev, Howard Base, Joel Rozga, M. Ibraham","doi":"10.1109/ASMC.2018.8373200","DOIUrl":null,"url":null,"abstract":"The importance of Computational Fluid Dynamic (CFD) modelling will be demonstrated for refining component design. Improving the flow dynamics within components can reduce the pressure required to establish flow, eliminate eddy flows, eliminate zero flow locations and establish uniform laminar flow or turbulent flow. Reducing the system back pressure allows for smaller pumps and less energy to establish and maintain flow (GF). Eliminating eddy flows and zero flow locations will improve process control (APC), reduce particulates generation (CFM), reduce degradation of components (ER) and improve equipment reliability (ER). The elimination of eddy flows can reduce erosion of components such as 0-rings. The exclusion of zero flow locations within a chemical heater will eliminate overheating and reduce degradation of chemistry. Improving the thermodynamics within components can reduce degradation of chemistry (CFM) and improve the uniformity of thermal characteristic within a component (APC) resulting in decreased thermal variations of the chemistry (YE).","PeriodicalId":349004,"journal":{"name":"2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC.2018.8373200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The importance of Computational Fluid Dynamic (CFD) modelling will be demonstrated for refining component design. Improving the flow dynamics within components can reduce the pressure required to establish flow, eliminate eddy flows, eliminate zero flow locations and establish uniform laminar flow or turbulent flow. Reducing the system back pressure allows for smaller pumps and less energy to establish and maintain flow (GF). Eliminating eddy flows and zero flow locations will improve process control (APC), reduce particulates generation (CFM), reduce degradation of components (ER) and improve equipment reliability (ER). The elimination of eddy flows can reduce erosion of components such as 0-rings. The exclusion of zero flow locations within a chemical heater will eliminate overheating and reduce degradation of chemistry. Improving the thermodynamics within components can reduce degradation of chemistry (CFM) and improve the uniformity of thermal characteristic within a component (APC) resulting in decreased thermal variations of the chemistry (YE).
精炼部件设计的计算流体动力学建模:AEM:先进设备和材料工艺
计算流体动力学(CFD)建模对于改进部件设计的重要性将得到证明。改善构件内部的流动动力学,可以降低建立流动所需的压力,消除涡流,消除零流位置,建立均匀的层流或湍流。降低系统背压可以使用更小的泵和更少的能量来建立和维持流量(GF)。消除涡流和零流位置将改善过程控制(APC),减少颗粒产生(CFM),减少部件退化(ER)并提高设备可靠性(ER)。消除涡流可以减少对0环等部件的侵蚀。在化学加热器内排除零流位置将消除过热和减少化学降解。改善组分内部热力学可以减少化学降解(CFM),提高组分内部热特性的均匀性(APC),从而减少化学热变化(YE)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信