Entropy-Based Model Selection Using Monte Carlo Method

Masaki Satoh, T. Miura
{"title":"Entropy-Based Model Selection Using Monte Carlo Method","authors":"Masaki Satoh, T. Miura","doi":"10.1109/BESC48373.2019.8963133","DOIUrl":null,"url":null,"abstract":"In this investigation, we propose a new kind of simplification specialized for Multiple Regression Analysis (MRA) using Random sampling. We propose a novel approach to simplify MRA models for dimension reduction while preserving amount of information. After applying Principle Component Analysis (PCA) to explanatory variables of interests to simplify relationship among them, we reduce the variables (dimensions) quickly to avoid loss of entropy in an efficient manner. We show an experimental results to see the effectiveness of this approach. Our main idea comes from random sampling with the tight relationship between entropy and multiple correlation coefficients (MCC).","PeriodicalId":190867,"journal":{"name":"2019 6th International Conference on Behavioral, Economic and Socio-Cultural Computing (BESC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th International Conference on Behavioral, Economic and Socio-Cultural Computing (BESC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BESC48373.2019.8963133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this investigation, we propose a new kind of simplification specialized for Multiple Regression Analysis (MRA) using Random sampling. We propose a novel approach to simplify MRA models for dimension reduction while preserving amount of information. After applying Principle Component Analysis (PCA) to explanatory variables of interests to simplify relationship among them, we reduce the variables (dimensions) quickly to avoid loss of entropy in an efficient manner. We show an experimental results to see the effectiveness of this approach. Our main idea comes from random sampling with the tight relationship between entropy and multiple correlation coefficients (MCC).
基于熵的蒙特卡罗方法模型选择
在这项研究中,我们提出了一种新的简化,专门为多回归分析(MRA)使用随机抽样。我们提出了一种新的方法来简化MRA模型的降维,同时保留大量的信息。通过对利益解释变量进行主成分分析(PCA),简化解释变量之间的关系,快速降维,有效避免了熵的损失。通过实验验证了该方法的有效性。我们的主要思想来自随机抽样,熵和多重相关系数(MCC)之间的紧密关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信