Undecidability of QLTL and QCTL with two variables and one monadic predicate letter

M. Rybakov, D. Shkatov
{"title":"Undecidability of QLTL and QCTL with two variables and one monadic predicate letter","authors":"M. Rybakov, D. Shkatov","doi":"10.21146/2074-1472-2021-27-2-93-120","DOIUrl":null,"url":null,"abstract":"We study the algorithmic properties of the quantified linear-time temporal logic QLTL in languages with restrictions on the number of individual variables as well as the number and arity of predicate letters. We prove that the satisfiability problem for QLTL in languages with two individual variables and one monadic predicate letter in Σ 11 -hard. Thus, QLTL is Π 11 -hard, and so not recursively enumerable, in such languages. The resultholds both for the increasing domain and the constant domain semantics and is obtained by reduction from a Σ 11 -hard N×N recurrent tiling problem. It follows from the proof for QLTL that similar results hold for the quantified branching-time temporal logic QCTL, and hence for the quantified alternating-time temporal logic QATL. The result presented in this paper strengthens a result by I. Hodkinson, F. Wolter, and M. Zakharyaschev, who have shown that the satisfiability problem for QLTL is Σ 11 -hard in languages with two individual variablesand an unlimited supply of monadic predicate letters.","PeriodicalId":155189,"journal":{"name":"Logical Investigations","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logical Investigations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21146/2074-1472-2021-27-2-93-120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We study the algorithmic properties of the quantified linear-time temporal logic QLTL in languages with restrictions on the number of individual variables as well as the number and arity of predicate letters. We prove that the satisfiability problem for QLTL in languages with two individual variables and one monadic predicate letter in Σ 11 -hard. Thus, QLTL is Π 11 -hard, and so not recursively enumerable, in such languages. The resultholds both for the increasing domain and the constant domain semantics and is obtained by reduction from a Σ 11 -hard N×N recurrent tiling problem. It follows from the proof for QLTL that similar results hold for the quantified branching-time temporal logic QCTL, and hence for the quantified alternating-time temporal logic QATL. The result presented in this paper strengthens a result by I. Hodkinson, F. Wolter, and M. Zakharyaschev, who have shown that the satisfiability problem for QLTL is Σ 11 -hard in languages with two individual variablesand an unlimited supply of monadic predicate letters.
具有两个变量和一个一元谓词字母的QLTL和QCTL的不可判定性
研究了具有变量个数限制和谓词字母个数限制的语言中量化线性时间时间逻辑QLTL的算法性质。我们在Σ 11 -hard中证明了具有两个独立变量和一个一元谓词字母的语言的QLTL的可满足性问题。因此,在这些语言中,QLTL是Π 11 -hard的,因此不能递归枚举。该结果同时适用于增加域和恒定域语义,并通过对一个Σ 11 -hard N×N递归平铺问题的约简得到。由QLTL的证明可知,量化的分支时间时间逻辑QCTL和量化的交替时间时间逻辑QATL也有类似的结果。本文提出的结果加强了I. Hodkinson, F. Wolter和M. Zakharyaschev的结果,他们已经表明,在具有两个独立变量和无限单谓词字母的语言中,QLTL的可满足性问题是Σ 11 -hard。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信