An FPGA Implementation of a Hopfield Optimized Block Truncation Coding

S. Saif, H. M. Abbas, S. Nassar, A. Wahdan
{"title":"An FPGA Implementation of a Hopfield Optimized Block Truncation Coding","authors":"S. Saif, H. M. Abbas, S. Nassar, A. Wahdan","doi":"10.1109/IWSOC.2006.348230","DOIUrl":null,"url":null,"abstract":"This paper presents an implementation for image compression using variable block truncation coding (BTC) on a field programmable gate array (FPGA). The compression technique is improved by employing a cost function obtained using Hopfield neural network (HNN), upon which a block is classified as either a high- or a low-detail block. Accordingly, different blocks are coded with different bit rates and thus better compression ratios are achieved. The paper formulates the utilization of HNN within the BTC algorithm in such a way that a viable FPGA implementation is produced. The Xilinx Virtex EBTC implementation has shown to provide a processing speed of about 1.113 times 106 of pixels per second with a compression ratio which varies between 1.25 and 2 bits per pixel, according to the image homogeneity","PeriodicalId":134742,"journal":{"name":"2006 6th International Workshop on System on Chip for Real Time Applications","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 6th International Workshop on System on Chip for Real Time Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSOC.2006.348230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents an implementation for image compression using variable block truncation coding (BTC) on a field programmable gate array (FPGA). The compression technique is improved by employing a cost function obtained using Hopfield neural network (HNN), upon which a block is classified as either a high- or a low-detail block. Accordingly, different blocks are coded with different bit rates and thus better compression ratios are achieved. The paper formulates the utilization of HNN within the BTC algorithm in such a way that a viable FPGA implementation is produced. The Xilinx Virtex EBTC implementation has shown to provide a processing speed of about 1.113 times 106 of pixels per second with a compression ratio which varies between 1.25 and 2 bits per pixel, according to the image homogeneity
Hopfield优化块截断编码的FPGA实现
本文提出了在现场可编程门阵列(FPGA)上使用可变块截断编码(BTC)实现图像压缩。利用Hopfield神经网络(HNN)得到的代价函数对压缩技术进行改进,并根据代价函数对块进行高细节块和低细节块的分类。因此,不同的块以不同的比特率编码,从而获得更好的压缩比。本文阐述了在BTC算法中HNN的利用,从而产生了一个可行的FPGA实现。根据图像的均匀性,Xilinx Virtex EBTC实现的处理速度约为每秒1.113乘以106像素,压缩比在每像素1.25到2比特之间变化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信