Teknik Bagging Dan Boosting Pada Algoritma CART Untuk Klasifikasi Masa Studi Mahasiswa

Ahmad Rusadi Arrahimi, Muhammad Khairi Ihsan, Dwi Kartini, M. Faisal, Fatma Indriani
{"title":"Teknik Bagging Dan Boosting Pada Algoritma CART Untuk Klasifikasi Masa Studi Mahasiswa","authors":"Ahmad Rusadi Arrahimi, Muhammad Khairi Ihsan, Dwi Kartini, M. Faisal, Fatma Indriani","doi":"10.34128/JSI.V5I1.171","DOIUrl":null,"url":null,"abstract":"Undergraduate Students data in academic information systems always increases every year. Data collected can be processed using data mining to gain new knowledge. The author tries to mine undergraduate students data to classify the study period on time or not on time. The data is analyzed using CART with bagging techniqu, and CART with boosting technique. The classification results using 49 testing data, in the CART algorithm with bagging techniques 13 data (26.531%) entered into the classification on time and 36 data (73.469%) entered into the classification not on time. In the CART algorithm with boosting technique 16 data (32,653%) entered into the classification on time and 33 data (67,347%) entered into the classification not on time. The accuracy value of the classification of study period of undergraduate students using the CART algorithm is 79.592%, the CART algorithm with bagging technique is 81.633%, and the CART algorithm with boosting technique is 87.755%. In this study, the CART algorithm with boosting technique has the best accuracy value.","PeriodicalId":426758,"journal":{"name":"Jurnal Sains dan Informatika","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Sains dan Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34128/JSI.V5I1.171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Undergraduate Students data in academic information systems always increases every year. Data collected can be processed using data mining to gain new knowledge. The author tries to mine undergraduate students data to classify the study period on time or not on time. The data is analyzed using CART with bagging techniqu, and CART with boosting technique. The classification results using 49 testing data, in the CART algorithm with bagging techniques 13 data (26.531%) entered into the classification on time and 36 data (73.469%) entered into the classification not on time. In the CART algorithm with boosting technique 16 data (32,653%) entered into the classification on time and 33 data (67,347%) entered into the classification not on time. The accuracy value of the classification of study period of undergraduate students using the CART algorithm is 79.592%, the CART algorithm with bagging technique is 81.633%, and the CART algorithm with boosting technique is 87.755%. In this study, the CART algorithm with boosting technique has the best accuracy value.
学术信息系统中的本科生数据每年都在增加。收集的数据可以使用数据挖掘来处理,以获得新的知识。笔者试图通过对大学生数据的挖掘,对按时和不按时的学习时间进行分类。采用套袋法CART和增压法CART对数据进行分析。使用49个测试数据的分类结果,在采用bagging技术的CART算法中,13个数据(26.531%)按时进入分类,36个数据(73.469%)未按时进入分类。在采用增强技术的CART算法中,按时进入分类的数据有16个(32,653%),未按时进入分类的数据有33个(67347%)。采用CART算法对本科生学习时间分类的准确率值为79.592%,采用套袋技术的CART算法准确率值为81.633%,采用助推技术的CART算法准确率值为87.755%。在本研究中,采用增强技术的CART算法具有最好的精度值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信