{"title":"Asynchronous communication for wireless sensors using ultra wideband impulse radio","authors":"Qisong Hu, Chen Yi, J. Kliewer, Wei Tang","doi":"10.1109/MWSCAS.2015.7282170","DOIUrl":null,"url":null,"abstract":"This paper addresses simulations and design of an asynchronous integrated ultra wideband impulse radio transmitter and receiver suitable for low-power miniaturized wireless sensors. This paper first presents software simulations for asynchronous transmission over noisy channels using FSK-OOK modulation, which demonstrates that the proposed architecture is capable to communicate reliably at moderate signal-to-noise ratios and that the main errors are due to deletions of received noisy transmit pulses. Then, we address a hardware chip implementation of the integrated UWB transmitter and receiver, which is fabricated using an IBM 0.18μm CMOS process. This implementation provides a low peak power consumption, i.e., 10.8 mW for the transmitter and 5.4 mW for the receiver, respectively. The measured maximum baseband data rate of the proposed radio is 2.3 Mb/s.","PeriodicalId":216613,"journal":{"name":"2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2015.7282170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
This paper addresses simulations and design of an asynchronous integrated ultra wideband impulse radio transmitter and receiver suitable for low-power miniaturized wireless sensors. This paper first presents software simulations for asynchronous transmission over noisy channels using FSK-OOK modulation, which demonstrates that the proposed architecture is capable to communicate reliably at moderate signal-to-noise ratios and that the main errors are due to deletions of received noisy transmit pulses. Then, we address a hardware chip implementation of the integrated UWB transmitter and receiver, which is fabricated using an IBM 0.18μm CMOS process. This implementation provides a low peak power consumption, i.e., 10.8 mW for the transmitter and 5.4 mW for the receiver, respectively. The measured maximum baseband data rate of the proposed radio is 2.3 Mb/s.