Electrical and optical properties of nanohybrid MEH-PPV: Niobium doped TiO2 thin films for organic photovoltaic cells

F. Zahid, M. Sarah, M. Musa, U. Noor, M. Rusop
{"title":"Electrical and optical properties of nanohybrid MEH-PPV: Niobium doped TiO2 thin films for organic photovoltaic cells","authors":"F. Zahid, M. Sarah, M. Musa, U. Noor, M. Rusop","doi":"10.1109/ICEDSA.2012.6507801","DOIUrl":null,"url":null,"abstract":"Titanium dioxide (TiO2) nanopowders of pure and niobium (Nb) doped TiO2 were synthesized using a sol gel immersed heater method. The nanopowders were then used as a filler in poly [2-methoxy-5-(2'-ethylhexyloxy)-p-phneylene] (MEH-PPV) to form hybrid organic-inorganic solar cells. In this study, the influence of TiO2 doped with different concentrations of niobium on the properties of nanohybrid MEH-PPV: TiO2 thin films have been investigated. Compared with a pristine thin film (undoped TiO2), the nanohybrid MEH-PPV: doped TiO2 thin films show an improvement in electrical photoconductivity with increase of niobium concentration. Optical analysis reveals that Nb-doped TiO2 shows a shift in absorption edge to longer wavelength compared to undoped TiO2 and exhibited strong absorption at wavelength Of 500 nm in visible and 340 nm in UV ranges respectively. The nanohybrid thin films have an average of 70% transmission in visible region and the energy band gap values using Tauc's formula have also been estimated.","PeriodicalId":132198,"journal":{"name":"2012 IEEE International Conference on Electronics Design, Systems and Applications (ICEDSA)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Electronics Design, Systems and Applications (ICEDSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEDSA.2012.6507801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Titanium dioxide (TiO2) nanopowders of pure and niobium (Nb) doped TiO2 were synthesized using a sol gel immersed heater method. The nanopowders were then used as a filler in poly [2-methoxy-5-(2'-ethylhexyloxy)-p-phneylene] (MEH-PPV) to form hybrid organic-inorganic solar cells. In this study, the influence of TiO2 doped with different concentrations of niobium on the properties of nanohybrid MEH-PPV: TiO2 thin films have been investigated. Compared with a pristine thin film (undoped TiO2), the nanohybrid MEH-PPV: doped TiO2 thin films show an improvement in electrical photoconductivity with increase of niobium concentration. Optical analysis reveals that Nb-doped TiO2 shows a shift in absorption edge to longer wavelength compared to undoped TiO2 and exhibited strong absorption at wavelength Of 500 nm in visible and 340 nm in UV ranges respectively. The nanohybrid thin films have an average of 70% transmission in visible region and the energy band gap values using Tauc's formula have also been estimated.
有机光伏电池用纳米杂化MEH-PPV:铌掺杂TiO2薄膜的电学和光学特性
采用溶胶-凝胶浸没加热法制备了纯二氧化钛(TiO2)和掺铌(Nb)纳米TiO2粉体。然后将纳米粉末用作聚[2-甲氧基-5-(2'-乙基己氧基)-对苯二烯](MEH-PPV)的填料,形成有机-无机杂化太阳能电池。在本研究中,研究了掺杂不同浓度铌的TiO2对纳米杂化MEH-PPV: TiO2薄膜性能的影响。与原始薄膜(未掺杂TiO2)相比,纳米杂化MEH-PPV:掺杂TiO2薄膜的光电导电性随着铌浓度的增加而提高。光学分析表明,与未掺杂TiO2相比,nb掺杂TiO2的吸收边沿向更长的波长偏移,在可见光和紫外波段分别表现出500 nm和340 nm的强吸收。纳米杂化薄膜在可见光区的平均透射率为70%,并利用Tauc公式估算了其能带隙值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信