Using Social Network Analysis Metrics of Virtual Forums to Predict Performance in e-Learning Courses

Henrique Lemos dos Santos, C. Cechinel, Ricardo Matsumura Araujo, Emanuel Marques Queiroga
{"title":"Using Social Network Analysis Metrics of Virtual Forums to Predict Performance in e-Learning Courses","authors":"Henrique Lemos dos Santos, C. Cechinel, Ricardo Matsumura Araujo, Emanuel Marques Queiroga","doi":"10.1109/LACLO.2018.00045","DOIUrl":null,"url":null,"abstract":"The present article proposes the use of social network metrics extracted from forums interactions in distance education courses in order to predict students failing. Eight centrality metrics from forums were used as input information for training and testing five different classifiers able to early predict at-risk students. The initial findings indicate these attributes are informative and useful for prediction, however predictive models performance vary considerably across courses and depending on the amount of data collected.","PeriodicalId":340408,"journal":{"name":"2018 XIII Latin American Conference on Learning Technologies (LACLO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 XIII Latin American Conference on Learning Technologies (LACLO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LACLO.2018.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present article proposes the use of social network metrics extracted from forums interactions in distance education courses in order to predict students failing. Eight centrality metrics from forums were used as input information for training and testing five different classifiers able to early predict at-risk students. The initial findings indicate these attributes are informative and useful for prediction, however predictive models performance vary considerably across courses and depending on the amount of data collected.
利用虚拟论坛的社会网络分析指标预测电子学习课程的表现
本文建议使用从远程教育课程论坛互动中提取的社会网络指标来预测学生的不及格。来自论坛的八个中心性指标被用作培训和测试五种不同分类器的输入信息,这些分类器能够早期预测有风险的学生。最初的研究结果表明,这些属性对预测有用,但预测模型的性能在不同的课程和收集的数据量上差异很大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信