An improved algorithm for the generalized min-cut partitioning problem

S. Tragoudas
{"title":"An improved algorithm for the generalized min-cut partitioning problem","authors":"S. Tragoudas","doi":"10.1109/GLSV.1994.289961","DOIUrl":null,"url":null,"abstract":"We consider the generalization of the min-cut partitioning problem in which the nodes of a circuit C are to be mapped to the vertices of a graph G, and the cost function to be minimized is the cost of associating the nets of C with the edges of G. Vijayan (see IEEE Trans. on Computers, vol. 40, no. 3, 1991) recently presented an iterative improvement heuristic for the case when G is a tree T. Let P be the number of pins, t be the number of nodes of T, and d be the maximum number of cells on a net of C. The running time of a pass of the heuristic given in Vijayan's paper is O(P/spl middot/t/sup 3/). For a graph G, this approach requires O(P/spl middot/t/sup 4/) time per pass. We present a heuristic for this particular problem which guarantees exactly the same partitions in time O(P/spl middot/t min/spl lcub/d,t/spl rcub/) per pass, for any graph G. The problem finds important applications in a variety of situations that arise in VLSI physical design, and in distributed systems.<<ETX>>","PeriodicalId":330584,"journal":{"name":"Proceedings of 4th Great Lakes Symposium on VLSI","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 4th Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLSV.1994.289961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the generalization of the min-cut partitioning problem in which the nodes of a circuit C are to be mapped to the vertices of a graph G, and the cost function to be minimized is the cost of associating the nets of C with the edges of G. Vijayan (see IEEE Trans. on Computers, vol. 40, no. 3, 1991) recently presented an iterative improvement heuristic for the case when G is a tree T. Let P be the number of pins, t be the number of nodes of T, and d be the maximum number of cells on a net of C. The running time of a pass of the heuristic given in Vijayan's paper is O(P/spl middot/t/sup 3/). For a graph G, this approach requires O(P/spl middot/t/sup 4/) time per pass. We present a heuristic for this particular problem which guarantees exactly the same partitions in time O(P/spl middot/t min/spl lcub/d,t/spl rcub/) per pass, for any graph G. The problem finds important applications in a variety of situations that arise in VLSI physical design, and in distributed systems.<>
广义最小分割问题的一种改进算法
我们考虑最小切划分问题的推广,其中电路C的节点要映射到图G的顶点,并且要最小化的代价函数是将C的网络与G的边相关联的代价。《论计算机》,第40卷,第6期。3, 1991)最近提出了一种迭代改进启发式,当G是树t时,设P为引脚数,t为t的节点数,d为网络c上的最大单元数。Vijayan的论文给出的启发式的一次运行时间为O(P/spl middot/t/sup 3/)。对于图G,这种方法每次通过需要O(P/spl middot/t/sup /)时间。我们为这个特殊问题提出了一个启发式方法,它保证在任何图g的每次通过时间O(P/spl middot/t min/spl lcub/d,t/spl rcub/)中完全相同的分区。这个问题在VLSI物理设计和分布式系统中出现的各种情况下都有重要的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信