A pattern recognition research for crosswise normalized forearm SEMG signal

Bai Qiaohua, Zhan Qiang, Liu Jinkun
{"title":"A pattern recognition research for crosswise normalized forearm SEMG signal","authors":"Bai Qiaohua, Zhan Qiang, Liu Jinkun","doi":"10.1109/FPM.2011.6045902","DOIUrl":null,"url":null,"abstract":"SEMG (surface electromyogram) signal is the electrical activity of human body movement, different SEMG is the characterization of the different movements. This paper analyzes the collected SEMG by time-domain method, extracted time domain characteristic value, constructed the characteristic value vector of multiple parameters before and after normalization, using the average value as the training sample, and then makes the pattern recognition to the SEMG of the forearm and hand four different actions based on BP neural network. The results show that the normalized time-domain has a better recognition effect, and this could have certain practical reference value for the SEMG controlled artificial limb.","PeriodicalId":241423,"journal":{"name":"Proceedings of 2011 International Conference on Fluid Power and Mechatronics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2011 International Conference on Fluid Power and Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPM.2011.6045902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

SEMG (surface electromyogram) signal is the electrical activity of human body movement, different SEMG is the characterization of the different movements. This paper analyzes the collected SEMG by time-domain method, extracted time domain characteristic value, constructed the characteristic value vector of multiple parameters before and after normalization, using the average value as the training sample, and then makes the pattern recognition to the SEMG of the forearm and hand four different actions based on BP neural network. The results show that the normalized time-domain has a better recognition effect, and this could have certain practical reference value for the SEMG controlled artificial limb.
前臂横向归一化表面肌电信号的模式识别研究
肌表电图(SEMG)信号是人体运动的电活动,不同的SEMG是不同运动的表征。本文采用时域方法对采集到的表面肌电信号进行分析,提取时域特征值,构建归一化前后多个参数的特征值向量,以均值作为训练样本,然后基于BP神经网络对前臂和手部四种不同动作的表面肌电信号进行模式识别。结果表明,归一化时域具有较好的识别效果,对表面肌电信号控制的假肢具有一定的实用参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信