A bi-objective heuristic for heterogeneous MPSoC design space exploration

B. Mediouni, S. Niar, R. Benmansour, K. Benatchba, M. Koudil
{"title":"A bi-objective heuristic for heterogeneous MPSoC design space exploration","authors":"B. Mediouni, S. Niar, R. Benmansour, K. Benatchba, M. Koudil","doi":"10.1109/IDT.2015.7396742","DOIUrl":null,"url":null,"abstract":"Recent technology advances allow new generation reconfigurable-based embedded systems to contain a large number of cores and reconfigurable logic elements. Consequently, to take benefit of such very powerful hybrid reconfigurable MPSoC, designers need tools to explore the large design space of the possible configurations. In this paper, we develop a new hybrid bi-objective genetic and parallel variable neighborhood descent algorithm (GA-PVNS) to determine close to optimal configurations for heterogeneous FPGA-based MPSoC (Ht-MPSoC). Our exploration method aims to optimize simultaneously two objectives, namely area on the FPGA and execution time, taking advantage of the Genetic Algorithm (GA) diversification ability and the intensification provided by Variable Neighborhood Search (VNS) algorithm. Our design space includes Ht-MPSoC with private and shared HW accelerators on FPGA. Compared to exact methods, our algorithm determines very satisfactory multi-objective configurations in a very reduced execution time.","PeriodicalId":321810,"journal":{"name":"2015 10th International Design & Test Symposium (IDT)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Design & Test Symposium (IDT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDT.2015.7396742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Recent technology advances allow new generation reconfigurable-based embedded systems to contain a large number of cores and reconfigurable logic elements. Consequently, to take benefit of such very powerful hybrid reconfigurable MPSoC, designers need tools to explore the large design space of the possible configurations. In this paper, we develop a new hybrid bi-objective genetic and parallel variable neighborhood descent algorithm (GA-PVNS) to determine close to optimal configurations for heterogeneous FPGA-based MPSoC (Ht-MPSoC). Our exploration method aims to optimize simultaneously two objectives, namely area on the FPGA and execution time, taking advantage of the Genetic Algorithm (GA) diversification ability and the intensification provided by Variable Neighborhood Search (VNS) algorithm. Our design space includes Ht-MPSoC with private and shared HW accelerators on FPGA. Compared to exact methods, our algorithm determines very satisfactory multi-objective configurations in a very reduced execution time.
异构MPSoC设计空间探索的双目标启发式算法
最近的技术进步允许新一代基于可重构的嵌入式系统包含大量的内核和可重构的逻辑元素。因此,为了利用这种非常强大的混合可重构MPSoC,设计人员需要工具来探索可能配置的大设计空间。本文提出了一种新的混合双目标遗传和并行可变邻域下降算法(GA-PVNS)来确定异构fpga MPSoC (Ht-MPSoC)的接近最优配置。我们的探索方法旨在利用遗传算法(GA)的多样化能力和可变邻域搜索(VNS)算法提供的强化,同时优化FPGA上的面积和执行时间两个目标。我们的设计空间包括在FPGA上具有专用和共享HW加速器的Ht-MPSoC。与精确的方法相比,我们的算法在非常短的执行时间内确定了非常满意的多目标配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信