Tobias Steinmetzer, Simon Piatraschk, Ingrid Bönninger, C. Travieso-González, Barbara Priwitzer
{"title":"Gesture Recognition with 3D Sensors using Hidden Markov Models and Clustering","authors":"Tobias Steinmetzer, Simon Piatraschk, Ingrid Bönninger, C. Travieso-González, Barbara Priwitzer","doi":"10.1109/IWOBI47054.2019.9114513","DOIUrl":null,"url":null,"abstract":"We propose a method for recognizing dynamic gestures using a 3D sensor. New aspects of the developed system include problem-adapted data conversion and compression as well as automatic detection of different variants of the same gesture via clustering with a suitable metric inspired by Jaccard metric. The combination of Hidden Markov Models and clustering leads to robust detection of different executions based on a small set of training data. We achieved an increase of 5% recognition rate compared to regular Hidden Markov Models. The system has been used for human-machine interaction and might serve as an assistive system in physiotherapy and neurological or orthopedic diagnosis.","PeriodicalId":427695,"journal":{"name":"2019 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWOBI47054.2019.9114513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a method for recognizing dynamic gestures using a 3D sensor. New aspects of the developed system include problem-adapted data conversion and compression as well as automatic detection of different variants of the same gesture via clustering with a suitable metric inspired by Jaccard metric. The combination of Hidden Markov Models and clustering leads to robust detection of different executions based on a small set of training data. We achieved an increase of 5% recognition rate compared to regular Hidden Markov Models. The system has been used for human-machine interaction and might serve as an assistive system in physiotherapy and neurological or orthopedic diagnosis.