Gesture Recognition with 3D Sensors using Hidden Markov Models and Clustering

Tobias Steinmetzer, Simon Piatraschk, Ingrid Bönninger, C. Travieso-González, Barbara Priwitzer
{"title":"Gesture Recognition with 3D Sensors using Hidden Markov Models and Clustering","authors":"Tobias Steinmetzer, Simon Piatraschk, Ingrid Bönninger, C. Travieso-González, Barbara Priwitzer","doi":"10.1109/IWOBI47054.2019.9114513","DOIUrl":null,"url":null,"abstract":"We propose a method for recognizing dynamic gestures using a 3D sensor. New aspects of the developed system include problem-adapted data conversion and compression as well as automatic detection of different variants of the same gesture via clustering with a suitable metric inspired by Jaccard metric. The combination of Hidden Markov Models and clustering leads to robust detection of different executions based on a small set of training data. We achieved an increase of 5% recognition rate compared to regular Hidden Markov Models. The system has been used for human-machine interaction and might serve as an assistive system in physiotherapy and neurological or orthopedic diagnosis.","PeriodicalId":427695,"journal":{"name":"2019 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWOBI47054.2019.9114513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a method for recognizing dynamic gestures using a 3D sensor. New aspects of the developed system include problem-adapted data conversion and compression as well as automatic detection of different variants of the same gesture via clustering with a suitable metric inspired by Jaccard metric. The combination of Hidden Markov Models and clustering leads to robust detection of different executions based on a small set of training data. We achieved an increase of 5% recognition rate compared to regular Hidden Markov Models. The system has been used for human-machine interaction and might serve as an assistive system in physiotherapy and neurological or orthopedic diagnosis.
基于隐马尔可夫模型和聚类的三维传感器手势识别
我们提出了一种使用3D传感器识别动态手势的方法。开发的系统的新方面包括自适应问题的数据转换和压缩,以及通过使用受Jaccard度量启发的合适度量聚类来自动检测同一手势的不同变体。隐马尔可夫模型和聚类的结合可以基于一小部分训练数据对不同的执行进行鲁棒检测。与常规的隐马尔可夫模型相比,我们的识别率提高了5%。该系统已用于人机交互,并可作为辅助系统在物理治疗和神经或骨科诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信