Experimental study on oscillating paddling gait of an eccentric paddle mechanism

Huayan Pu, Yi Sun, Shugen Ma, Zhenbang Gong
{"title":"Experimental study on oscillating paddling gait of an eccentric paddle mechanism","authors":"Huayan Pu, Yi Sun, Shugen Ma, Zhenbang Gong","doi":"10.1109/ROBIO.2012.6490964","DOIUrl":null,"url":null,"abstract":"Eccentric paddle mechanism (ePaddle) is a novel locomotion mechanism designed for amphibious robot. Integrated with several paddles and a wheel, the ePaddle has versatility in locomotion gaits. In this paper, we focus on the aquatic oscillating paddling gait. The conception of the oscillating paddling gait is introduced firstly and followed by the analysis of the oscillation trajectory of the paddles. In order to verify the ability of producing effective thrust force by the oscillating paddling gait, a thrust measuring facility is built. A series of experiments have been carried out with this facility. From the results, we characterize how the amplitude and frequency of the generated net thrust force relate with the amplitude, period of the oscillation of the paddle. Finally, the influence of the number of paddles on the net thrust is analyzed.","PeriodicalId":426468,"journal":{"name":"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"94 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2012.6490964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Eccentric paddle mechanism (ePaddle) is a novel locomotion mechanism designed for amphibious robot. Integrated with several paddles and a wheel, the ePaddle has versatility in locomotion gaits. In this paper, we focus on the aquatic oscillating paddling gait. The conception of the oscillating paddling gait is introduced firstly and followed by the analysis of the oscillation trajectory of the paddles. In order to verify the ability of producing effective thrust force by the oscillating paddling gait, a thrust measuring facility is built. A series of experiments have been carried out with this facility. From the results, we characterize how the amplitude and frequency of the generated net thrust force relate with the amplitude, period of the oscillation of the paddle. Finally, the influence of the number of paddles on the net thrust is analyzed.
偏心桨机构摆动桨步的实验研究
偏心桨机构(ePaddle)是为水陆两栖机器人设计的一种新型运动机构。ePaddle集成了几个桨和一个轮子,在运动步态上具有多功能性。本文主要研究了水生动物的摆动划水步态。首先介绍了摆动桨步的概念,然后分析了摆动桨的运动轨迹。为了验证摆动摆动步态产生有效推力的能力,建立了推力测量装置。用这台设备进行了一系列的实验。从结果中,我们描述了产生的净推力的振幅和频率与桨叶振荡的振幅和周期的关系。最后,分析了桨叶数对净推力的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信