Dry versus Wet EEG electrode systems in Motor Imagery Classification

I. Domingos, F. Deligianni, Guang-Zhong Yang
{"title":"Dry versus Wet EEG electrode systems in Motor Imagery Classification","authors":"I. Domingos, F. Deligianni, Guang-Zhong Yang","doi":"10.31256/ukras17.24","DOIUrl":null,"url":null,"abstract":"Inês Domingos , Fani Deligianni 1 and Guang-Zhong Yang 1 The Hamlyn Centre for Robotic Surgery, Imperial College London, UK Abstract Motor imagery (MI) classification performance is important in developing robust brain computer interface environments for neuro-rehabilitation of patients and robotic prosthesis control. To bring this technology to everyday use relatively new EEG acquisition systems have been developed. These systems are highly portable, wireless and they are based on dry, active electrodes, which does not require the use of conductive gel. As a result they are more prone to interference via noise sources that are commonly around and their signal-to-noise ratio may be low. Here, we device a number of motor imagery tasks along with actual movements of the limbs and compare the classification performance of a dry 16-channel and a wet, 32channel, wireless EEG system. Our results demonstrate the feasibility of home use of dry electrode systems with a small number of sensors.","PeriodicalId":392429,"journal":{"name":"UK-RAS Conference: Robots Working For and Among Us Proceedings","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"UK-RAS Conference: Robots Working For and Among Us Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31256/ukras17.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Inês Domingos , Fani Deligianni 1 and Guang-Zhong Yang 1 The Hamlyn Centre for Robotic Surgery, Imperial College London, UK Abstract Motor imagery (MI) classification performance is important in developing robust brain computer interface environments for neuro-rehabilitation of patients and robotic prosthesis control. To bring this technology to everyday use relatively new EEG acquisition systems have been developed. These systems are highly portable, wireless and they are based on dry, active electrodes, which does not require the use of conductive gel. As a result they are more prone to interference via noise sources that are commonly around and their signal-to-noise ratio may be low. Here, we device a number of motor imagery tasks along with actual movements of the limbs and compare the classification performance of a dry 16-channel and a wet, 32channel, wireless EEG system. Our results demonstrate the feasibility of home use of dry electrode systems with a small number of sensors.
干湿脑电电极系统在运动意象分类中的应用
Inês Domingos, Fani Deligianni 1 and Guang-Zhong Yang 1英国伦敦帝国理工学院Hamlyn机器人外科中心摘要运动图像(MI)分类性能对于开发鲁棒的脑机接口环境,用于患者的神经康复和机器人假体控制具有重要意义。为了将这项技术应用到日常生活中,人们开发了相对较新的脑电图采集系统。这些系统是高度便携的,无线的,它们基于干燥的活性电极,不需要使用导电凝胶。因此,它们更容易受到噪声源的干扰,这些噪声源通常在周围,而且它们的信噪比可能很低。在这里,我们将一些运动图像任务与肢体的实际运动结合起来,并比较干的16通道和湿的32通道无线脑电图系统的分类性能。我们的结果证明了使用少量传感器的干电极系统的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信