Quantifying the impact of GPUs on performance and energy efficiency in HPC clusters

J. Enos, C. Steffen, Joshi Fullop, M. Showerman, Guochun Shi, K. Esler, V. Kindratenko, J. Stone, James C. Phillips
{"title":"Quantifying the impact of GPUs on performance and energy efficiency in HPC clusters","authors":"J. Enos, C. Steffen, Joshi Fullop, M. Showerman, Guochun Shi, K. Esler, V. Kindratenko, J. Stone, James C. Phillips","doi":"10.1109/GREENCOMP.2010.5598297","DOIUrl":null,"url":null,"abstract":"We present an inexpensive hardware system for monitoring power usage of individual CPU hosts and externally attached GPUs in HPC clusters and the software stack for integrating the power usage data streamed in real-time by the power monitoring hardware with the cluster management software tools. We introduce a measure for quantifying the overall improvement in performance-per-watt for applications that have been ported to work on the GPUs. We use the developed hardware/software infrastructure to demonstrate the overall improvement in performance-per-watt for several HPC applications implemented to work on GPUs.","PeriodicalId":262148,"journal":{"name":"International Conference on Green Computing","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Green Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GREENCOMP.2010.5598297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

Abstract

We present an inexpensive hardware system for monitoring power usage of individual CPU hosts and externally attached GPUs in HPC clusters and the software stack for integrating the power usage data streamed in real-time by the power monitoring hardware with the cluster management software tools. We introduce a measure for quantifying the overall improvement in performance-per-watt for applications that have been ported to work on the GPUs. We use the developed hardware/software infrastructure to demonstrate the overall improvement in performance-per-watt for several HPC applications implemented to work on GPUs.
量化gpu对高性能计算集群性能和能效的影响
我们提出了一种廉价的硬件系统,用于监控HPC集群中单个CPU主机和外接gpu的功耗,并提供了一种软件堆栈,用于将功耗监控硬件实时传输的功耗数据与集群管理软件工具集成在一起。我们引入了一种度量,用于量化已移植到gpu上的应用程序在每瓦特性能方面的总体改进。我们使用开发的硬件/软件基础设施来演示在gpu上实现的几个HPC应用程序的每瓦特性能的总体改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信