Reduction and estimation of hyperspectral imagery using dual tree wavelet filter bank analysis with an orthogonal subspace projection approach

S. Swamy, B. Patel
{"title":"Reduction and estimation of hyperspectral imagery using dual tree wavelet filter bank analysis with an orthogonal subspace projection approach","authors":"S. Swamy, B. Patel","doi":"10.1145/1980022.1980228","DOIUrl":null,"url":null,"abstract":"Hyperspectral imagery provides richer information about materials than multispectral imagery. The new larger data volumes from hyperspectral sensors present a challenge for traditional processing techniques. Principal component analysis (PCA) has been the technique of choice for dimension reduction. Spectral data reduction and estimation using wavelet filter bank with perfect reconstruction can be considered for better results.","PeriodicalId":197580,"journal":{"name":"International Conference & Workshop on Emerging Trends in Technology","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference & Workshop on Emerging Trends in Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1980022.1980228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperspectral imagery provides richer information about materials than multispectral imagery. The new larger data volumes from hyperspectral sensors present a challenge for traditional processing techniques. Principal component analysis (PCA) has been the technique of choice for dimension reduction. Spectral data reduction and estimation using wavelet filter bank with perfect reconstruction can be considered for better results.
基于正交子空间投影法的对偶树小波滤波器组分析高光谱图像的约简与估计
高光谱图像提供了比多光谱图像更丰富的材料信息。来自高光谱传感器的新的更大数据量对传统处理技术提出了挑战。主成分分析(PCA)已成为降维的首选技术。可以考虑使用重构良好的小波滤波器组进行光谱数据的约简和估计,以获得较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信