Testing Lorentz Invariance Using Zeeman Transitions in Atomic Fountains

Peter Wolf, F. Chapelet, Sébastien Bize, André Clairon
{"title":"Testing Lorentz Invariance Using Zeeman Transitions in Atomic Fountains","authors":"Peter Wolf, F. Chapelet, Sébastien Bize, André Clairon","doi":"10.1109/FREQ.2005.1573912","DOIUrl":null,"url":null,"abstract":"Lorentz invariance (LI) is the founding postulate of Einstein's 1905 theory of relativity, and therefore at the heart of all accepted theories of physics. It characterizes the invariance of the laws of physics in inertial frames under changes of velocity or orientation. This central role, and indications from unification theories (Kostelecky, 1989) hinting toward a possible LI violation, have motivated tremendous experimental efforts to test LI. A comprehensive theoretical framework to describe violations of LI has been developed over the last decade (Colladay and Kostelecky): the Lorentz violating standard model extension (SME). It allows a characterization of LI violations in all fields of present day physics using a large (but finite) set of parameters which are all zero when LI is satisfied. All classical tests (e.g. Michelson-Morley or Kennedy-Thorndike experiments (Stanwix et al., 2005 and Wolf et al., 2004) can be analyzed in the SME, but it also allows the conception of new types of experiments, not thought of previously. We have carried out such a conceptually new LI test, by comparing particular atomic transitions (particular orientations of the involved nuclear spins) in the Cs atom using a cold atomic fountain clock. This allows us to test LI in a previously largely unexplored region of the SME parameter space, corresponding to first measurements of four proton parameters and an improvement by 11 and 12 orders of magnitude on the determination of four others. In spite of the attained accuracies, and of having extended the search into a new region of the SME, we still find no indication of LI violation","PeriodicalId":108334,"journal":{"name":"Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition, 2005.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FREQ.2005.1573912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Lorentz invariance (LI) is the founding postulate of Einstein's 1905 theory of relativity, and therefore at the heart of all accepted theories of physics. It characterizes the invariance of the laws of physics in inertial frames under changes of velocity or orientation. This central role, and indications from unification theories (Kostelecky, 1989) hinting toward a possible LI violation, have motivated tremendous experimental efforts to test LI. A comprehensive theoretical framework to describe violations of LI has been developed over the last decade (Colladay and Kostelecky): the Lorentz violating standard model extension (SME). It allows a characterization of LI violations in all fields of present day physics using a large (but finite) set of parameters which are all zero when LI is satisfied. All classical tests (e.g. Michelson-Morley or Kennedy-Thorndike experiments (Stanwix et al., 2005 and Wolf et al., 2004) can be analyzed in the SME, but it also allows the conception of new types of experiments, not thought of previously. We have carried out such a conceptually new LI test, by comparing particular atomic transitions (particular orientations of the involved nuclear spins) in the Cs atom using a cold atomic fountain clock. This allows us to test LI in a previously largely unexplored region of the SME parameter space, corresponding to first measurements of four proton parameters and an improvement by 11 and 12 orders of magnitude on the determination of four others. In spite of the attained accuracies, and of having extended the search into a new region of the SME, we still find no indication of LI violation
用原子喷泉中的塞曼跃迁检验洛伦兹不变性
洛伦兹不变性(LI)是爱因斯坦1905年提出的相对论的基本假设,因此也是所有公认的物理学理论的核心。它描述了惯性系中物理定律在速度或方向变化下的不变性。这一核心作用,以及统一理论(Kostelecky, 1989)暗示可能违反LI的迹象,激发了巨大的实验努力来测试LI。在过去的十年中(Colladay和Kostelecky)发展了一个描述LI违逆的综合理论框架:洛伦兹违逆标准模型扩展(SME)。它允许在当今物理学的所有领域中使用大量(但有限的)参数集来表征LI违规,当LI满足时,这些参数集都为零。所有经典的测试(如迈克尔逊-莫雷或肯尼迪-桑代克实验(Stanwix等人,2005年和沃尔夫等人,2004年)都可以在SME中进行分析,但它也允许新的实验类型的概念,以前没有想到过。我们使用冷原子喷泉钟,通过比较Cs原子中的特定原子跃迁(所涉及的核自旋的特定方向),进行了这样一个概念上的新LI测试。这使我们能够在SME参数空间的一个以前很大程度上未开发的区域测试LI,对应于四个质子参数的首次测量,以及对其他四个质子参数的测定的11和12个数量级的改进。尽管获得了精度,并且将搜索扩展到SME的新区域,但我们仍然没有发现违反LI的迹象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信