Ruin Probabilities for Markov-Modulated Jump-Diffusion Risk Model

C. Gu, Shenghong Li, Bo Zhou
{"title":"Ruin Probabilities for Markov-Modulated Jump-Diffusion Risk Model","authors":"C. Gu, Shenghong Li, Bo Zhou","doi":"10.1109/ICMSS.2009.5303625","DOIUrl":null,"url":null,"abstract":"The compound Poisson risk model perturbed by diffusion,which is so-called jump-diffusion risk model,is discussed and the expression of the ruin probability is given by the properties of spectrum negative Levy process.Furthermore,by introducing a Markovian environment process,the Markov-modulate jump-diffusion risk model is studied,whose integro-differential equations of the ultimate ruin probabilities are given.The Volterra integral equations for the ruin probabilities of this Markov-modulated jump-diffusion risk model are obtained by means of Laplace transform.In the end,two-state Markovian environment process is used as an example to explain the conclusion of the paper.","PeriodicalId":267621,"journal":{"name":"2009 International Conference on Management and Service Science","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Management and Service Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMSS.2009.5303625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The compound Poisson risk model perturbed by diffusion,which is so-called jump-diffusion risk model,is discussed and the expression of the ruin probability is given by the properties of spectrum negative Levy process.Furthermore,by introducing a Markovian environment process,the Markov-modulate jump-diffusion risk model is studied,whose integro-differential equations of the ultimate ruin probabilities are given.The Volterra integral equations for the ruin probabilities of this Markov-modulated jump-diffusion risk model are obtained by means of Laplace transform.In the end,two-state Markovian environment process is used as an example to explain the conclusion of the paper.
马尔可夫调制跳跃-扩散风险模型的破产概率
讨论了扩散扰动下的复合泊松风险模型,即跳跃-扩散风险模型,利用谱负Levy过程的性质给出了破产概率的表达式。进一步,通过引入马尔可夫环境过程,研究了马尔可夫调制跳跃-扩散风险模型,给出了该模型的最终破产概率的积分-微分方程。利用拉普拉斯变换,得到了马尔可夫调制跳跃-扩散风险模型破产概率的Volterra积分方程。最后以两态马尔可夫环境过程为例说明本文的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信