Generative adversarial networks to model air pollution under uncertainty

J. Toutouh, Sergio Nesmachnow, D. Rossit
{"title":"Generative adversarial networks to model air pollution under uncertainty","authors":"J. Toutouh, Sergio Nesmachnow, D. Rossit","doi":"10.47350/AICTS.2020.20","DOIUrl":null,"url":null,"abstract":"Urbanization trends worldwide show a clear preference for motorized road mobility, which has led to a degradation of air quality in recent years. Modelling and forecasting ambient air pollution is a relevant problem because it helps decision-makers and urban city planners understand this phenomenon, which is a significant threat to citizens’ health. Generally, datadriven models suffer from a lack of data. This article addresses the issue of having limited access to road traffic density and pollution concentration data by applying deep generative models, specifically, Conditional Generative Adversarial Networks (CGAN). The main idea is to train CGANs to generate synthetic nitrogen dioxide concentration values given the road traffic density. The experimental data analysis from Montevideo (Uruguay) shows that the proposed method generates realistic (accurate and diverse) pollution data while using reduced computational resources.","PeriodicalId":395296,"journal":{"name":"International Workshop on Advanced Information and Computation Technologies and Systems","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Advanced Information and Computation Technologies and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47350/AICTS.2020.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Urbanization trends worldwide show a clear preference for motorized road mobility, which has led to a degradation of air quality in recent years. Modelling and forecasting ambient air pollution is a relevant problem because it helps decision-makers and urban city planners understand this phenomenon, which is a significant threat to citizens’ health. Generally, datadriven models suffer from a lack of data. This article addresses the issue of having limited access to road traffic density and pollution concentration data by applying deep generative models, specifically, Conditional Generative Adversarial Networks (CGAN). The main idea is to train CGANs to generate synthetic nitrogen dioxide concentration values given the road traffic density. The experimental data analysis from Montevideo (Uruguay) shows that the proposed method generates realistic (accurate and diverse) pollution data while using reduced computational resources.
不确定条件下空气污染的生成对抗网络模型
世界范围内的城市化趋势明显倾向于机动化道路交通,这导致近年来空气质量的恶化。模拟和预测环境空气污染是一个相关的问题,因为它有助于决策者和城市规划者了解这一现象,这是对公民健康的重大威胁。通常,数据驱动的模型会受到缺乏数据的困扰。本文通过应用深度生成模型,特别是条件生成对抗网络(CGAN),解决了获取道路交通密度和污染浓度数据有限的问题。主要思想是训练cgan生成给定道路交通密度的合成二氧化氮浓度值。来自蒙得维的亚(乌拉圭)的实验数据分析表明,所提出的方法在使用减少的计算资源的同时产生了真实的(准确和多样化的)污染数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信