A Dynamic Programming Based Method for Optimum Linear Decomposition of Index Generation Functions

Shinobu Nagayama, Tsutomu Sasao, J. T. Butler
{"title":"A Dynamic Programming Based Method for Optimum Linear Decomposition of Index Generation Functions","authors":"Shinobu Nagayama, Tsutomu Sasao, J. T. Butler","doi":"10.1109/ISMVL.2019.00033","DOIUrl":null,"url":null,"abstract":"The problem addressed in this paper is minimization of the number of linear functions in a linear decomposition. This paper proposes an exact minimization method based on dynamic programming for index generation functions. The proposed method searches for an optimum solution while recursively dividing an index set of a given index generation function. To use partial solutions efficiently in solution search, the proposed method represents partitions of an index set compactly and uniquely by zero-suppressed binary decision diagrams (ZDDs). Existing methods based on a branch-and-bound approach search for a solution sequentially in a depth-first manner. On the other hand, the proposed method searches for multiple partial solutions in parallel in a breadth-first manner. Thus, once a solution is found, we can terminate the search process. This is because the depth of searches corresponds to the number of linear functions. Experimental results using benchmark index generation functions show the effectiveness of the proposed method.","PeriodicalId":329986,"journal":{"name":"2019 IEEE 49th International Symposium on Multiple-Valued Logic (ISMVL)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 49th International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2019.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The problem addressed in this paper is minimization of the number of linear functions in a linear decomposition. This paper proposes an exact minimization method based on dynamic programming for index generation functions. The proposed method searches for an optimum solution while recursively dividing an index set of a given index generation function. To use partial solutions efficiently in solution search, the proposed method represents partitions of an index set compactly and uniquely by zero-suppressed binary decision diagrams (ZDDs). Existing methods based on a branch-and-bound approach search for a solution sequentially in a depth-first manner. On the other hand, the proposed method searches for multiple partial solutions in parallel in a breadth-first manner. Thus, once a solution is found, we can terminate the search process. This is because the depth of searches corresponds to the number of linear functions. Experimental results using benchmark index generation functions show the effectiveness of the proposed method.
基于动态规划的索引生成函数最优线性分解方法
本文讨论的问题是线性分解中线性函数数目的最小化问题。针对索引生成函数,提出了一种基于动态规划的精确最小化方法。该方法通过递归划分给定索引生成函数的索引集来搜索最优解。为了在解搜索中有效地利用部分解,提出了用零抑制二进制决策图(zdd)紧凑而唯一地表示索引集分区的方法。现有的基于分支定界的方法以深度优先的方式依次搜索解。另一方面,该方法以宽度优先的方式并行搜索多个部分解。因此,一旦找到解决方案,我们就可以终止搜索过程。这是因为搜索的深度对应于线性函数的数量。使用基准指标生成函数的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信