{"title":"Challenge and solution for characterizing NBTI-generated defects in nanoscale devices","authors":"J. F. Zhang, R. Gao, Z. Ji, W. Zhang","doi":"10.1109/IPFA47161.2019.8984899","DOIUrl":null,"url":null,"abstract":"Negative bias temperature instability (NBTI) is a well known ageing process for CMOS technologies. Many early works were focused on large devices where device-to-device variations (DDV) are negligible. As device sizes downscale to nanometers, DDV becomes substantial. NBTI is a stochastic process and causes a time-dependent DDV. Characterizing the NBTI-generated defects in nanoscale devices has two main challenges. First, current fluctuates with time and this introduces uncertainties in measurements. Second, the test time is long and costly: to characterize the NBTI-induced DDV, it is essential to repeat the same test on multiple devices. This work reviews recent progresses in addressing these issues. Based on the As-grown-Generation (AG) model, it will be shown that the measurement uncertainties are dominated by As-grown hole traps and can be removed by subtracting the average value. To reduce the test time, the voltage step stress (VSS) technique is combined with the Stress-Discharge -Recharge (SDR) method. This VSS-SDR technique reduces test time to within one hour per device. The model extracted by VSS-SDR is verified by comparing its prediction with the test data obtained under conventional constant voltage stress.","PeriodicalId":169775,"journal":{"name":"2019 IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPFA47161.2019.8984899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Negative bias temperature instability (NBTI) is a well known ageing process for CMOS technologies. Many early works were focused on large devices where device-to-device variations (DDV) are negligible. As device sizes downscale to nanometers, DDV becomes substantial. NBTI is a stochastic process and causes a time-dependent DDV. Characterizing the NBTI-generated defects in nanoscale devices has two main challenges. First, current fluctuates with time and this introduces uncertainties in measurements. Second, the test time is long and costly: to characterize the NBTI-induced DDV, it is essential to repeat the same test on multiple devices. This work reviews recent progresses in addressing these issues. Based on the As-grown-Generation (AG) model, it will be shown that the measurement uncertainties are dominated by As-grown hole traps and can be removed by subtracting the average value. To reduce the test time, the voltage step stress (VSS) technique is combined with the Stress-Discharge -Recharge (SDR) method. This VSS-SDR technique reduces test time to within one hour per device. The model extracted by VSS-SDR is verified by comparing its prediction with the test data obtained under conventional constant voltage stress.