6DoF Pose-Estimation Pipeline for Texture-less Industrial Components in Bin Picking Applications

Andreas Blank, M. Hiller, Siyi Zhang, Alexander Leser, M. Metzner, M. Lieret, J. Thielecke, J. Franke
{"title":"6DoF Pose-Estimation Pipeline for Texture-less Industrial Components in Bin Picking Applications","authors":"Andreas Blank, M. Hiller, Siyi Zhang, Alexander Leser, M. Metzner, M. Lieret, J. Thielecke, J. Franke","doi":"10.1109/ECMR.2019.8870920","DOIUrl":null,"url":null,"abstract":"Over the next few years, autonomous robots and functionalities are expected to gain increased importance for the shop floor. Perception and the derivation of autonomous behavior is of crucial importance in this context. We present a combined object recognition and pose estimation pipeline to generate pose estimates with six degrees of freedom (6DoF) for bin picking, specifically targeting the suitability for challenging scenarios with texture-less, metallic parts in industrial environments. The pipeline is based on open source algorithms, combining Convolutional Neural Networks (CNNs) and feature-matching methods to create an effective 6DoF pose estimate. We evaluate our approach on several industrial components using a articulated arm robot to guarantee a high level of comparability during the different measurement runs. We further quantify the results using known error metrics for pose estimation, compare the results to established approaches and provide statistical insight into the achieved outcomes to assess the robustness and reliability.","PeriodicalId":435630,"journal":{"name":"2019 European Conference on Mobile Robots (ECMR)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 European Conference on Mobile Robots (ECMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECMR.2019.8870920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Over the next few years, autonomous robots and functionalities are expected to gain increased importance for the shop floor. Perception and the derivation of autonomous behavior is of crucial importance in this context. We present a combined object recognition and pose estimation pipeline to generate pose estimates with six degrees of freedom (6DoF) for bin picking, specifically targeting the suitability for challenging scenarios with texture-less, metallic parts in industrial environments. The pipeline is based on open source algorithms, combining Convolutional Neural Networks (CNNs) and feature-matching methods to create an effective 6DoF pose estimate. We evaluate our approach on several industrial components using a articulated arm robot to guarantee a high level of comparability during the different measurement runs. We further quantify the results using known error metrics for pose estimation, compare the results to established approaches and provide statistical insight into the achieved outcomes to assess the robustness and reliability.
无纹理工业部件的6DoF姿态估计流水线
在接下来的几年里,自主机器人及其功能预计将在车间中变得越来越重要。在这种情况下,自主行为的感知和推导是至关重要的。我们提出了一个组合的对象识别和姿态估计管道,以生成六自由度(6DoF)的姿态估计,用于bin拾取,特别是针对工业环境中具有无纹理金属部件的挑战性场景的适用性。该管道基于开源算法,结合卷积神经网络(cnn)和特征匹配方法来创建有效的6DoF姿态估计。我们使用关节臂机器人对几个工业部件进行了评估,以确保在不同的测量运行期间具有高水平的可比性。我们使用已知的姿态估计误差指标进一步量化结果,将结果与已建立的方法进行比较,并提供对实现结果的统计见解,以评估鲁棒性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信