G. Barthe, Marco Gaboardi, E. J. G. Arias, Justin Hsu, César Kunz, Pierre-Yves Strub
{"title":"Proving Differential Privacy in Hoare Logic","authors":"G. Barthe, Marco Gaboardi, E. J. G. Arias, Justin Hsu, César Kunz, Pierre-Yves Strub","doi":"10.1109/CSF.2014.36","DOIUrl":null,"url":null,"abstract":"Differential privacy is a rigorous, worst-case notion of privacy-preserving computation. Informally, a probabilistic program is differentially private if the participation of a single individual in the input database has a limited effect on the program's distribution on outputs. More technically, differential privacy is a quantitative 2-safety property that bounds the distance between the output distributions of a probabilistic program on adjacent inputs. Like many 2-safety properties, differential privacy lies outside the scope of traditional verification techniques. Existing approaches to enforce privacy are based on intricate, non-conventional type systems, or customized relational logics. These approaches are difficult to implement and often cumbersome to use. We present an alternative approach that verifies differential privacy by standard, non-relational reasoning on non-probabilistic programs. Our approach transforms a probabilistic program into a non-probabilistic program which simulates two executions of the original program. We prove that if the target program is correct with respect to a Hoare specification, then the original probabilistic program is differentially private. We provide a variety of examples from the differential privacy literature to demonstrate the utility of our approach. Finally, we compare our approach with existing verification techniques for privacy.","PeriodicalId":285965,"journal":{"name":"2014 IEEE 27th Computer Security Foundations Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 27th Computer Security Foundations Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSF.2014.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57
Abstract
Differential privacy is a rigorous, worst-case notion of privacy-preserving computation. Informally, a probabilistic program is differentially private if the participation of a single individual in the input database has a limited effect on the program's distribution on outputs. More technically, differential privacy is a quantitative 2-safety property that bounds the distance between the output distributions of a probabilistic program on adjacent inputs. Like many 2-safety properties, differential privacy lies outside the scope of traditional verification techniques. Existing approaches to enforce privacy are based on intricate, non-conventional type systems, or customized relational logics. These approaches are difficult to implement and often cumbersome to use. We present an alternative approach that verifies differential privacy by standard, non-relational reasoning on non-probabilistic programs. Our approach transforms a probabilistic program into a non-probabilistic program which simulates two executions of the original program. We prove that if the target program is correct with respect to a Hoare specification, then the original probabilistic program is differentially private. We provide a variety of examples from the differential privacy literature to demonstrate the utility of our approach. Finally, we compare our approach with existing verification techniques for privacy.