An Interactive Lane Change Decision Making Model With Deep Reinforcement Learning

Shenghao Jiang, Jiying Chen, Macheng Shen
{"title":"An Interactive Lane Change Decision Making Model With Deep Reinforcement Learning","authors":"Shenghao Jiang, Jiying Chen, Macheng Shen","doi":"10.1109/ICCMA46720.2019.8988750","DOIUrl":null,"url":null,"abstract":"By considering lane change maneuver as primarily a Partial Observed Markov Decision Process (POMDP) and motion planning problem, this paper presents an interactive model with a Recurrent Neural Network (RNN) approach to determine the adversarial or cooperative intention probability of following vehicle in target lane. To make proper and efficient lane change decision, Deep Q-value network (DQN) is applied to solve POMDP with expected global maximum reward. Then quintic polynomials-based motion planning algorithm is used to obtain both optimal lateral and longitudinal trajectory for autonomous vehicle to pursuit. Experimental results demonstrate the capability of the proposed model to execute lane change maneuver with comfortable and safety reference trajectory at an appropriate time instance and traffic gap in various highway traffic scenarios.","PeriodicalId":377212,"journal":{"name":"2019 7th International Conference on Control, Mechatronics and Automation (ICCMA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Conference on Control, Mechatronics and Automation (ICCMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMA46720.2019.8988750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

By considering lane change maneuver as primarily a Partial Observed Markov Decision Process (POMDP) and motion planning problem, this paper presents an interactive model with a Recurrent Neural Network (RNN) approach to determine the adversarial or cooperative intention probability of following vehicle in target lane. To make proper and efficient lane change decision, Deep Q-value network (DQN) is applied to solve POMDP with expected global maximum reward. Then quintic polynomials-based motion planning algorithm is used to obtain both optimal lateral and longitudinal trajectory for autonomous vehicle to pursuit. Experimental results demonstrate the capability of the proposed model to execute lane change maneuver with comfortable and safety reference trajectory at an appropriate time instance and traffic gap in various highway traffic scenarios.
基于深度强化学习的交互式变道决策模型
将变道机动主要视为一个部分观察马尔可夫决策过程(POMDP)和运动规划问题,提出了一种基于递归神经网络(RNN)方法的交互式模型,用于确定目标车道上跟随车辆的对抗或合作意图概率。为了做出正确有效的变道决策,采用深度q值网络(Deep Q-value network, DQN)求解具有全局期望最大回报的POMDP问题。然后,采用五次多项式运动规划算法,得到自动驾驶汽车最优的横向轨迹和纵向轨迹。实验结果表明,该模型能够在各种公路交通场景下,在适当的时间实例和交通间隙下,以舒适和安全的参考轨迹执行变道机动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信