Potential of ultra-high voltage silicon carbide semiconductor devices

D. Johannesson, M. Nawaz, Keijo Jacobs, S. Norrga, H. Nee
{"title":"Potential of ultra-high voltage silicon carbide semiconductor devices","authors":"D. Johannesson, M. Nawaz, Keijo Jacobs, S. Norrga, H. Nee","doi":"10.1109/WIPDA.2016.7799948","DOIUrl":null,"url":null,"abstract":"In this paper, the theoretical performance of ultra-high voltage Silicon Carbide (SiC) based devices are investigated. The SiC semiconductor device conduction power loss and switching power loss are predicted and compared with different modeling approaches, for SiC metal-oxide semiconductor field-effect transistors (MOSFETs) up to 20 kV and SiC gate turn-off (GTO) thyristors and SiC insulated-gate bipolar transistors (IGBTs) up to 50 kV. A parameter sensitivity analysis has been performed to observe the device power loss under various operating conditions, for instance current density, temperature and charge carrier lifetime. Also, the maximum allowed current density and maximum switching frequency for a maximum chip power dissipation limit of 300 W/cm2 are investigated. The simulation results indicate that the SiC MOSFET has the highest current capability up to approximately 15 kV, while the SiC IGBT is suitable in the range of 15 kV to 35 kV, and thereafter the SiC GTO thyristor supersedes the loss performance from 35 kV to 50 kV.","PeriodicalId":431347,"journal":{"name":"2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIPDA.2016.7799948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

In this paper, the theoretical performance of ultra-high voltage Silicon Carbide (SiC) based devices are investigated. The SiC semiconductor device conduction power loss and switching power loss are predicted and compared with different modeling approaches, for SiC metal-oxide semiconductor field-effect transistors (MOSFETs) up to 20 kV and SiC gate turn-off (GTO) thyristors and SiC insulated-gate bipolar transistors (IGBTs) up to 50 kV. A parameter sensitivity analysis has been performed to observe the device power loss under various operating conditions, for instance current density, temperature and charge carrier lifetime. Also, the maximum allowed current density and maximum switching frequency for a maximum chip power dissipation limit of 300 W/cm2 are investigated. The simulation results indicate that the SiC MOSFET has the highest current capability up to approximately 15 kV, while the SiC IGBT is suitable in the range of 15 kV to 35 kV, and thereafter the SiC GTO thyristor supersedes the loss performance from 35 kV to 50 kV.
超高压碳化硅半导体器件的潜力
本文研究了超高压碳化硅(SiC)基器件的理论性能。对20kv以下的SiC金属氧化物半导体场效应晶体管(mosfet)、50kv以下的SiC栅极关断(GTO)晶闸管和SiC绝缘栅双极晶体管(igbt)的SiC半导体器件的传导功率损耗和开关功率损耗进行了预测和比较。对器件在电流密度、温度和载流子寿命等不同工作条件下的功率损耗进行了参数灵敏度分析。同时,研究了最大芯片功耗限制为300 W/cm2时的最大允许电流密度和最大开关频率。仿真结果表明,SiC MOSFET在约15 kV范围内具有最高的电流能力,SiC IGBT在15 ~ 35 kV范围内适用,此后SiC GTO可控硅在35 ~ 50 kV范围内取代了损耗性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信