Sleep stage classification with stochastic Bayesian inference

L. Calvet, J. Friedman, D. Querlioz, P. Bessière, J. Droulez
{"title":"Sleep stage classification with stochastic Bayesian inference","authors":"L. Calvet, J. Friedman, D. Querlioz, P. Bessière, J. Droulez","doi":"10.1145/2950067.2950085","DOIUrl":null,"url":null,"abstract":"The design of electronic circuits that can realize Bayesian inference is an important goal for exploiting machine learning in a fast and efficient way. We recently developed a novel architecture based on stochastic computation with Muller C-elements that can realize a circuit level naïve Bayes inference. This technique can be implemented using low power nanodevices exhibiting faults and device variations. Here we show how a more complex classification problem can be transformed into a simple circuit using this framework where an effective classification can be obtained with a minimal amount of information. This suggests that substantially smaller spatial footprints for portable devices could ultimately be achieved.","PeriodicalId":213559,"journal":{"name":"2016 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2950067.2950085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The design of electronic circuits that can realize Bayesian inference is an important goal for exploiting machine learning in a fast and efficient way. We recently developed a novel architecture based on stochastic computation with Muller C-elements that can realize a circuit level naïve Bayes inference. This technique can be implemented using low power nanodevices exhibiting faults and device variations. Here we show how a more complex classification problem can be transformed into a simple circuit using this framework where an effective classification can be obtained with a minimal amount of information. This suggests that substantially smaller spatial footprints for portable devices could ultimately be achieved.
基于随机贝叶斯推理的睡眠阶段分类
设计能够实现贝叶斯推理的电子电路是快速有效地利用机器学习的一个重要目标。我们最近开发了一种基于Muller c元随机计算的新架构,可以实现电路级naïve贝叶斯推理。该技术可以使用具有故障和器件变化的低功率纳米器件来实现。在这里,我们展示了如何使用这个框架将一个更复杂的分类问题转换成一个简单的电路,在这个框架中,可以用最少的信息获得有效的分类。这表明,便携式设备的空间足迹最终可以大大缩小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信