Hetero2 3D integration: A scheme for optimizing efficiency/cost of Chip Multiprocessors

S. Priyadarshi, N. Choudhary, Brandon H. Dwiel, Ankita Upreti, E. Rotenberg, W. R. Davis, P. Franzon
{"title":"Hetero2 3D integration: A scheme for optimizing efficiency/cost of Chip Multiprocessors","authors":"S. Priyadarshi, N. Choudhary, Brandon H. Dwiel, Ankita Upreti, E. Rotenberg, W. R. Davis, P. Franzon","doi":"10.1109/ISQED.2013.6523582","DOIUrl":null,"url":null,"abstract":"Timing the transition of a processor design to a new technology poses a provocative tradeoff. On the one hand, transitioning as early as possible offers a significant competitive advantage, by bringing improved designs to market early. On the other hand, an aggressive strategy may prove to be unprofitable, due to the low manufacturing yield of a technology that has not had time to mature. We propose exploiting two complementary forms of heterogeneity to profitably exploit an immature technology for Chip Multiprocessors (CMP). First, 3D integration facilitates a technology alloy. The CMP is split across two dies, one fabricated in the old technology and the other in the new technology. The alloy derives benefit from the new technology while limiting cost exposure. Second, to compensate for lower efficiency of old-technology cores, we exploit application and microarchitectural heterogeneity: applications which gain less from technology scaling are scheduled on old-technology cores, moreover, these cores are retuned to optimize this class of application. For a defect density ratio of 200 between 45nm and 65nm, Hetero2 3D gives 3.6× and 1.5× higher efficiency/cost compared to 2D and 3D homogeneous implementations, respectively, with only 6.5% degradation in efficiency. We also present a sensitivity analysis by sweeping the defect density ratio. The analysis reveals the defect density break-even points, where homogeneous 2D and 3D designs in 45nm achieve the same efficiency/cost as Hetero2 3D, marking significant points in the maturing of the technology.","PeriodicalId":127115,"journal":{"name":"International Symposium on Quality Electronic Design (ISQED)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2013.6523582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Timing the transition of a processor design to a new technology poses a provocative tradeoff. On the one hand, transitioning as early as possible offers a significant competitive advantage, by bringing improved designs to market early. On the other hand, an aggressive strategy may prove to be unprofitable, due to the low manufacturing yield of a technology that has not had time to mature. We propose exploiting two complementary forms of heterogeneity to profitably exploit an immature technology for Chip Multiprocessors (CMP). First, 3D integration facilitates a technology alloy. The CMP is split across two dies, one fabricated in the old technology and the other in the new technology. The alloy derives benefit from the new technology while limiting cost exposure. Second, to compensate for lower efficiency of old-technology cores, we exploit application and microarchitectural heterogeneity: applications which gain less from technology scaling are scheduled on old-technology cores, moreover, these cores are retuned to optimize this class of application. For a defect density ratio of 200 between 45nm and 65nm, Hetero2 3D gives 3.6× and 1.5× higher efficiency/cost compared to 2D and 3D homogeneous implementations, respectively, with only 6.5% degradation in efficiency. We also present a sensitivity analysis by sweeping the defect density ratio. The analysis reveals the defect density break-even points, where homogeneous 2D and 3D designs in 45nm achieve the same efficiency/cost as Hetero2 3D, marking significant points in the maturing of the technology.
异构三维集成:一种优化芯片多处理器效率/成本的方案
处理器设计向新技术过渡的时机是一个令人激动的权衡。一方面,尽早进行转换可以提供显著的竞争优势,因为可以将改进的设计尽早推向市场。另一方面,激进的策略可能被证明是无利可图的,因为一项技术的制造产量很低,还没有时间成熟。我们建议利用两种互补的异构形式来利用芯片多处理器(CMP)的不成熟技术。首先,3D集成促进了一种技术合金。CMP分为两个模具,一个用旧技术制造,另一个用新技术制造。这种合金从新技术中获益,同时降低了成本。其次,为了弥补老技术核心的低效率,我们利用应用程序和微架构的异质性:在老技术核心上调度从技术扩展中获得较少收益的应用程序,并且这些核心被返回以优化这类应用程序。在45nm和65nm之间的缺陷密度比为200时,与2D和3D均质实现相比,Hetero2 3D的效率/成本分别提高了3.6倍和1.5倍,效率仅下降6.5%。我们还提出了通过扫描缺陷密度比的灵敏度分析。分析揭示了缺陷密度的收支平衡点,在45nm的均匀2D和3D设计中,可以实现与Hetero2 3D相同的效率/成本,这标志着该技术的成熟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信