View-independent scene acquisition for tele-presence

J. Mulligan, Kostas Daniilidis
{"title":"View-independent scene acquisition for tele-presence","authors":"J. Mulligan, Kostas Daniilidis","doi":"10.1109/ISAR.2000.880933","DOIUrl":null,"url":null,"abstract":"Tele-immersion is a new medium that enables a user to share a virtual space with remote participants. The user is immersed in a rendered 3D-world that is transmitted from a remote site. To acquire this 3D description we apply bi- and trinocular stereo techniques. The challenge is to compute dense stereo range data at high frame rates, since participants cannot easily communicate if the processing cycle or network latencies are long. Moreover, new views of the received 3D-world must be as accurate as possible. We address both issues of speed and accuracy and we propose a method for combining motion and stereo in order to increase speed and robustness.","PeriodicalId":448772,"journal":{"name":"Proceedings IEEE and ACM International Symposium on Augmented Reality (ISAR 2000)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE and ACM International Symposium on Augmented Reality (ISAR 2000)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAR.2000.880933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

Tele-immersion is a new medium that enables a user to share a virtual space with remote participants. The user is immersed in a rendered 3D-world that is transmitted from a remote site. To acquire this 3D description we apply bi- and trinocular stereo techniques. The challenge is to compute dense stereo range data at high frame rates, since participants cannot easily communicate if the processing cycle or network latencies are long. Moreover, new views of the received 3D-world must be as accurate as possible. We address both issues of speed and accuracy and we propose a method for combining motion and stereo in order to increase speed and robustness.
用于远程呈现的独立于视图的场景采集
远程沉浸是一种新的媒介,使用户能够与远程参与者共享虚拟空间。用户沉浸在从远程站点传输的渲染3d世界中。为了获得这种三维描述,我们采用了双立体和三立体技术。挑战在于以高帧率计算密集的立体距离数据,因为如果处理周期或网络延迟较长,参与者无法轻松通信。此外,接收到的3d世界的新视图必须尽可能准确。我们解决了速度和准确性的问题,并提出了一种结合运动和立体的方法,以提高速度和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信