Using a New Type Quasi-Newton Equation for Unconstrained Optimization

Basim A. Hassan, Ranen M. Sulaiman
{"title":"Using a New Type Quasi-Newton Equation for Unconstrained Optimization","authors":"Basim A. Hassan, Ranen M. Sulaiman","doi":"10.1109/IEC52205.2021.9476089","DOIUrl":null,"url":null,"abstract":"The quasi-Newton equation is the very foundation of an assortment of the quasi-Newton methods. In this paper, we derive a new quasi-Newton equation with a gradient-difference vector which makes full use of both function and gradient value information. The novelty of our method is established on the quadratic approximation of objection function. We analyze the convergence rate of the gradient method under some mild condition. Some numerical simulations are conducted to demonstrate the efficiency of the new methods.","PeriodicalId":374702,"journal":{"name":"2021 7th International Engineering Conference “Research & Innovation amid Global Pandemic\" (IEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Engineering Conference “Research & Innovation amid Global Pandemic\" (IEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEC52205.2021.9476089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The quasi-Newton equation is the very foundation of an assortment of the quasi-Newton methods. In this paper, we derive a new quasi-Newton equation with a gradient-difference vector which makes full use of both function and gradient value information. The novelty of our method is established on the quadratic approximation of objection function. We analyze the convergence rate of the gradient method under some mild condition. Some numerical simulations are conducted to demonstrate the efficiency of the new methods.
一类新型准牛顿方程的无约束优化
准牛顿方程是各种准牛顿方法的基础。本文充分利用了函数信息和梯度值信息,导出了一个具有梯度差分向量的拟牛顿方程。该方法的新颖性建立在目标函数的二次逼近上。在一些温和的条件下,分析了梯度法的收敛速度。通过数值仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信