Sampling-based Motion Planning via Control Barrier Functions

Guang Yang, Bee Vang, Zachary T. Serlin, C. Belta, Roberto Tron
{"title":"Sampling-based Motion Planning via Control Barrier Functions","authors":"Guang Yang, Bee Vang, Zachary T. Serlin, C. Belta, Roberto Tron","doi":"10.1145/3365265.3365282","DOIUrl":null,"url":null,"abstract":"Robot motion planning is central to real-world autonomous applications, such as self-driving cars, persistence surveillance, and robotic arm manipulation. One challenge in motion planning is generating control signals for nonlinear systems that result in obstacle free paths through dynamic environments. In this paper, we propose Control Barrier Function guided Rapidly-exploring Random Trees (CBF-RRT), a sampling-based motion planning algorithm for continuoustime nonlinear systems in dynamic environments. The algorithm focuses on two objectives: efficiently generating feasible controls that steer the system toward a goal region, and handling environments with dynamical obstacles in continuous time. We formulate the control synthesis problem as a Quadratic Program (QP) that enforces Control Barrier Function (CBF) constraints to achieve obstacle avoidance. Additionally, CBF-RRT does not require nearest neighbor or explicit collision checks during sampling.","PeriodicalId":358714,"journal":{"name":"Proceedings of the 2019 3rd International Conference on Automation, Control and Robots","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 3rd International Conference on Automation, Control and Robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3365265.3365282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Robot motion planning is central to real-world autonomous applications, such as self-driving cars, persistence surveillance, and robotic arm manipulation. One challenge in motion planning is generating control signals for nonlinear systems that result in obstacle free paths through dynamic environments. In this paper, we propose Control Barrier Function guided Rapidly-exploring Random Trees (CBF-RRT), a sampling-based motion planning algorithm for continuoustime nonlinear systems in dynamic environments. The algorithm focuses on two objectives: efficiently generating feasible controls that steer the system toward a goal region, and handling environments with dynamical obstacles in continuous time. We formulate the control synthesis problem as a Quadratic Program (QP) that enforces Control Barrier Function (CBF) constraints to achieve obstacle avoidance. Additionally, CBF-RRT does not require nearest neighbor or explicit collision checks during sampling.
基于控制障碍函数的采样运动规划
机器人运动规划是现实世界中自主应用的核心,比如自动驾驶汽车、持续监控和机械臂操作。运动规划中的一个挑战是为非线性系统生成控制信号,从而在动态环境中实现无障碍路径。本文提出了一种基于采样的连续时间非线性系统运动规划算法——控制障碍函数引导快速探索随机树(CBF-RRT)。该算法主要关注两个目标:一是有效地生成可行控制,使系统朝着目标区域移动;二是在连续时间内处理具有动态障碍物的环境。我们将控制综合问题表述为一个二次规划(QP),它通过控制障碍函数(CBF)约束来实现避障。此外,CBF-RRT在采样期间不需要最近邻或显式碰撞检查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信