Evolutionary Multiobjective Optimization for Adaptive Dataflow-based Digital Predistortion Architectures

Lin Li, Amanullah Ghazi, J. Boutellier, L. Anttila, M. Valkama, S. Bhattacharyya
{"title":"Evolutionary Multiobjective Optimization for Adaptive Dataflow-based Digital Predistortion Architectures","authors":"Lin Li, Amanullah Ghazi, J. Boutellier, L. Anttila, M. Valkama, S. Bhattacharyya","doi":"10.4108/eai.23-2-2017.152187","DOIUrl":null,"url":null,"abstract":"In wireless communication systems, high-power transmitters suffer from nonlinearities due to power amplifier (PA) characteristics, I/Q imbalance, and local oscillator (LO) leakage. Digital Predistortion (DPD) is an effective technique to counteract these impairments. To help maximize agility in cognitive radio systems, it is important to investigate dynamically reconfigurable DPD systems that are adaptive to changes in the employed modulation schemes and operational constraints. To help maximize effectiveness, such reconfiguration should be performed based on multidimensional operational criteria. With this motivation, we develop in this paper a novel evolutionary algorithm framework for multiobjective optimization of DPD systems. We demonstrate our framework by applying it to develop an adaptive DPD architecture, called the adaptive, dataflow-based DPD architecture (ADDA), where Pareto-optimized DPD parameters are derived subject to multidimensional constraints to support efficient predistortion across timevarying operational requirements and modulation schemes. Through extensive simulation results, we demonstrate the effectiveness of our proposed multiobjective optimization framework in deriving efficient DPD configurations for runtime adaptation.","PeriodicalId":334012,"journal":{"name":"EAI Endorsed Trans. Cogn. Commun.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Trans. Cogn. Commun.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.23-2-2017.152187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In wireless communication systems, high-power transmitters suffer from nonlinearities due to power amplifier (PA) characteristics, I/Q imbalance, and local oscillator (LO) leakage. Digital Predistortion (DPD) is an effective technique to counteract these impairments. To help maximize agility in cognitive radio systems, it is important to investigate dynamically reconfigurable DPD systems that are adaptive to changes in the employed modulation schemes and operational constraints. To help maximize effectiveness, such reconfiguration should be performed based on multidimensional operational criteria. With this motivation, we develop in this paper a novel evolutionary algorithm framework for multiobjective optimization of DPD systems. We demonstrate our framework by applying it to develop an adaptive DPD architecture, called the adaptive, dataflow-based DPD architecture (ADDA), where Pareto-optimized DPD parameters are derived subject to multidimensional constraints to support efficient predistortion across timevarying operational requirements and modulation schemes. Through extensive simulation results, we demonstrate the effectiveness of our proposed multiobjective optimization framework in deriving efficient DPD configurations for runtime adaptation.
基于自适应数据流的数字预失真结构的进化多目标优化
在无线通信系统中,大功率发射机受到功率放大器(PA)特性、I/Q不平衡和本振(LO)泄漏等非线性因素的影响。数字预失真(DPD)技术是消除这些缺陷的有效技术。为了最大限度地提高认知无线电系统的灵活性,研究动态可重构的DPD系统是很重要的,该系统可以适应所采用的调制方案和操作约束的变化。为了帮助最大限度地提高效率,这种重新配置应该基于多维操作标准来执行。基于这一动机,本文提出了一种新的DPD系统多目标优化进化算法框架。我们通过将其应用于开发自适应DPD架构来展示我们的框架,称为自适应,基于数据流的DPD架构(ADDA),其中pareto优化的DPD参数在多维约束下导出,以支持跨时变操作需求和调制方案的有效预失真。通过大量的仿真结果,我们证明了我们提出的多目标优化框架在获得有效的DPD配置以适应运行时方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信