Artificial intelligence for software development — the present and the challenges for the future

Łukasz Korzeniowski, K. Goczyła
{"title":"Artificial intelligence for software development — the present and the challenges for the future","authors":"Łukasz Korzeniowski, K. Goczyła","doi":"10.5604/01.3001.0013.1464","DOIUrl":null,"url":null,"abstract":"Since the time when first CASE (Computer-Aided Software Engineering) methods and tools were developed, little has been done in the area of automated creation of code. CASE tools support a software engineer in creation the system structure, in defining interfaces and relationships between software modules and, after the code has been written, in performing testing tasks on different levels of detail. Writing code is still the task of a skilled human, which makes the whole software development a costly and error-prone process. It seems that recent advances in AI area, particularly in deep learning methods, may considerably improve the matters. The paper presents an extensive survey of recent work and achievements in this area reported in the literature, both from the theoretical branch of research and from engineer-oriented approaches. Then, some challenges for the future work are proposed, classified into Full AI, Assisted AI and Supplementary AI research fields.\nKeywords: software development, artificial intelligence, machine learning, automated code generation\n\n","PeriodicalId":232579,"journal":{"name":"Bulletin of the Military University of Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Military University of Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0013.1464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Since the time when first CASE (Computer-Aided Software Engineering) methods and tools were developed, little has been done in the area of automated creation of code. CASE tools support a software engineer in creation the system structure, in defining interfaces and relationships between software modules and, after the code has been written, in performing testing tasks on different levels of detail. Writing code is still the task of a skilled human, which makes the whole software development a costly and error-prone process. It seems that recent advances in AI area, particularly in deep learning methods, may considerably improve the matters. The paper presents an extensive survey of recent work and achievements in this area reported in the literature, both from the theoretical branch of research and from engineer-oriented approaches. Then, some challenges for the future work are proposed, classified into Full AI, Assisted AI and Supplementary AI research fields. Keywords: software development, artificial intelligence, machine learning, automated code generation
软件开发中的人工智能——现状与未来的挑战
自从第一个CASE(计算机辅助软件工程)方法和工具被开发出来以来,在代码的自动创建领域几乎没有做过什么。CASE工具支持软件工程师创建系统结构,定义软件模块之间的接口和关系,以及在编写代码之后,在不同的细节层次上执行测试任务。编写代码仍然是技术人员的任务,这使得整个软件开发过程成本高昂且容易出错。似乎最近人工智能领域的进展,特别是在深度学习方法方面,可能会大大改善这种情况。本文从理论研究分支和以工程为导向的方法,对这一领域的最新工作和成果进行了广泛的调查。然后,提出了未来工作的挑战,并将其分为全人工智能、辅助人工智能和辅助人工智能三个研究领域。关键词:软件开发,人工智能,机器学习,自动代码生成
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信