{"title":"GALS Partitioning Methodology for Substrate Noise Reduction in Mixed-Signal Integrated Circuits","authors":"M. Babić, Steffen Zeidler, M. Krstic","doi":"10.1109/ASYNC.2016.15","DOIUrl":null,"url":null,"abstract":"This paper proposes a methodology for substrate noise reduction in mixed-signal integrated circuits (IC) by using a globally-asynchronous locally-synchronous (GALS) approach for digital system integration. For this purpose the harmonic balanced partitioning strategy is proposed. It is shown that by converting a synchronous design into a plesiochronous GALS design with M locally-synchronous modules (LSMs), a theoretical limit of spectral peak attenuation corresponds to 20logM. This model is evaluated by numerical simulations in MATLAB. Based on the proposed partitioning scheme, a methodology for GALS partitioning for optimal substrate noise reduction is developed. Finally the corresponding low-noise GALS design flow is proposed, based on a custom noise optimization tool named EMIAS. The flow is evaluated on a realistic design example.","PeriodicalId":314538,"journal":{"name":"2016 22nd IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 22nd IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASYNC.2016.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper proposes a methodology for substrate noise reduction in mixed-signal integrated circuits (IC) by using a globally-asynchronous locally-synchronous (GALS) approach for digital system integration. For this purpose the harmonic balanced partitioning strategy is proposed. It is shown that by converting a synchronous design into a plesiochronous GALS design with M locally-synchronous modules (LSMs), a theoretical limit of spectral peak attenuation corresponds to 20logM. This model is evaluated by numerical simulations in MATLAB. Based on the proposed partitioning scheme, a methodology for GALS partitioning for optimal substrate noise reduction is developed. Finally the corresponding low-noise GALS design flow is proposed, based on a custom noise optimization tool named EMIAS. The flow is evaluated on a realistic design example.