Multiparametric model predictive control and state estimation of the hypnotic component in anesthesia

I. Nascu, E. Pistikopoulos
{"title":"Multiparametric model predictive control and state estimation of the hypnotic component in anesthesia","authors":"I. Nascu, E. Pistikopoulos","doi":"10.1109/AQTR.2016.7501357","DOIUrl":null,"url":null,"abstract":"This paper describes multiparametric model predictive control strategies for the control of depth of anaesthesia. Based on a detailed compartmental model featuring a pharmacokinetic and a pharmacodynamics part, two different control strategies are employed: a nominal multiparametric model predictive control and a simultaneous multiparametric moving horizon estimation and model predictive control. The control strategies are tested on a set of 12 patients in the induction and maintenance phase and analyzed comparatively. Moreover the inter-as well as the intra-patient variability is analyzed in detail. The performed simulations show good performances and satisfactory behavior.","PeriodicalId":110627,"journal":{"name":"2016 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AQTR.2016.7501357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper describes multiparametric model predictive control strategies for the control of depth of anaesthesia. Based on a detailed compartmental model featuring a pharmacokinetic and a pharmacodynamics part, two different control strategies are employed: a nominal multiparametric model predictive control and a simultaneous multiparametric moving horizon estimation and model predictive control. The control strategies are tested on a set of 12 patients in the induction and maintenance phase and analyzed comparatively. Moreover the inter-as well as the intra-patient variability is analyzed in detail. The performed simulations show good performances and satisfactory behavior.
麻醉中催眠成分的多参数模型预测控制与状态估计
本文介绍了用于麻醉深度控制的多参数模型预测控制策略。基于包含药代动力学和药效学部分的详细室室模型,采用了两种不同的控制策略:标称多参数模型预测控制和多参数运动水平估计和模型预测控制。对12例处于诱导和维持阶段的患者进行了控制策略测试,并进行了对比分析。此外,还详细分析了患者之间和患者内部的变异性。仿真结果表明,该系统具有良好的性能和令人满意的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信