Bases comparison in control space of nonholonomic systems

I. Dulęba
{"title":"Bases comparison in control space of nonholonomic systems","authors":"I. Dulęba","doi":"10.1109/ROMOCO.2004.240577","DOIUrl":null,"url":null,"abstract":"In this paper, bases in the space of controls are evaluated for driftless nonholonomic systems. As a tool of the evaluation, the pre-control form of the generalized Campbell-Baker-Hausdorff-Dynkin formula is used. It appears that harmonic, Fourier basis is the best among the two other tested bases: polynomial (Legendre) basis and the simplest wavelet basis - the Haar basis. An impact of bases on motion planning for nonholonomic robots is explained.","PeriodicalId":176081,"journal":{"name":"Proceedings of the Fourth International Workshop on Robot Motion and Control (IEEE Cat. No.04EX891)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth International Workshop on Robot Motion and Control (IEEE Cat. No.04EX891)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMOCO.2004.240577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, bases in the space of controls are evaluated for driftless nonholonomic systems. As a tool of the evaluation, the pre-control form of the generalized Campbell-Baker-Hausdorff-Dynkin formula is used. It appears that harmonic, Fourier basis is the best among the two other tested bases: polynomial (Legendre) basis and the simplest wavelet basis - the Haar basis. An impact of bases on motion planning for nonholonomic robots is explained.
非完整系统控制空间中的基比较
本文对无漂移非完整系统的控制空间中的基进行了求解。作为一种评估工具,使用了广义Campbell-Baker-Hausdorff-Dynkin公式的预控制形式。谐波傅立叶基是另外两种测试基中最好的:多项式基(勒让德基)和最简单的小波基-哈尔基。说明了基对非完整机器人运动规划的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信