O. Mazouffre, R. Toupe, M. Pignol, Y. Deval, J. Bégueret
{"title":"2-4 and 9-12 Gb/s CMOS fully integrated ILO-based CDR","authors":"O. Mazouffre, R. Toupe, M. Pignol, Y. Deval, J. Bégueret","doi":"10.1109/RFIC.2010.5477391","DOIUrl":null,"url":null,"abstract":"A CDR dedicated to satellite data link is presented. The clock recovery function is made-up of an Injection Locked Oscillator combined with an analog phase alignment circuit. The circuit covers two bit-rate ranges: 2.2 to 4.3 Gb/s and 9.1 to 12.1 Gb/s. It was designed in 130 nm CMOS bulk process from STMicroelectronics. The overall power dissipation is 400 mW in the first bit-rate range and 480 mW in the second including 220 mW for I/O buffers. The eye opening at 10-9 of bit error rate is 940 mUI/440 mV at 3.1 Gb/s and 720 mUI/300 mV at 10.3 Gb/s.","PeriodicalId":269027,"journal":{"name":"2010 IEEE Radio Frequency Integrated Circuits Symposium","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Radio Frequency Integrated Circuits Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC.2010.5477391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
A CDR dedicated to satellite data link is presented. The clock recovery function is made-up of an Injection Locked Oscillator combined with an analog phase alignment circuit. The circuit covers two bit-rate ranges: 2.2 to 4.3 Gb/s and 9.1 to 12.1 Gb/s. It was designed in 130 nm CMOS bulk process from STMicroelectronics. The overall power dissipation is 400 mW in the first bit-rate range and 480 mW in the second including 220 mW for I/O buffers. The eye opening at 10-9 of bit error rate is 940 mUI/440 mV at 3.1 Gb/s and 720 mUI/300 mV at 10.3 Gb/s.