Sarani Bhattacharya, C. Rebeiro, Debdeep Mukhopadhyay
{"title":"A Formal Security Analysis of Even-Odd Sequential Prefetching in Profiled Cache-Timing Attacks","authors":"Sarani Bhattacharya, C. Rebeiro, Debdeep Mukhopadhyay","doi":"10.1145/2948618.2948624","DOIUrl":null,"url":null,"abstract":"Hardware cache prefetching has a profound impact on the memory access pattern of ciphers which are exploited in profiled cache-timing attacks. In this paper, we formally demonstrate that memory access patterns influenced by sequential prefetching and its variant, known as even-odd prefetcher has varying information leakage dependent on the alignment of the underlying tables used in the cipher implementation. This demonstrates that a suitable architecture choice for the hardware prefetcher combined with appropriate memory alignment in software can lead to prefetching architectures which are leakage resilient.","PeriodicalId":141766,"journal":{"name":"Hardware and Architectural Support for Security and Privacy","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hardware and Architectural Support for Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2948618.2948624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Hardware cache prefetching has a profound impact on the memory access pattern of ciphers which are exploited in profiled cache-timing attacks. In this paper, we formally demonstrate that memory access patterns influenced by sequential prefetching and its variant, known as even-odd prefetcher has varying information leakage dependent on the alignment of the underlying tables used in the cipher implementation. This demonstrates that a suitable architecture choice for the hardware prefetcher combined with appropriate memory alignment in software can lead to prefetching architectures which are leakage resilient.