Detection of knocking in Spark Ignition (SI) engines using CMAC neural networks

K. Kamal, M. Farid, S. Mathavan
{"title":"Detection of knocking in Spark Ignition (SI) engines using CMAC neural networks","authors":"K. Kamal, M. Farid, S. Mathavan","doi":"10.1109/ICRAI.2012.6413381","DOIUrl":null,"url":null,"abstract":"Knocking in SI (Spark Ignition) engines is one of the most addressable problems. If not detected in early stages, it causes a severe damage to an SI engine. Various techniques have been proposed so far, in order to detect early knock symptoms. This paper presents a novel approach to detect knocking using technique of Artificial Intelligence. A four stroke, single cylinder engine is simulated using GT Power engine simulation software. Data is generated through simulation for both knock and no-knock conditions. A CMAC (Cerebellar Model Articulation Controller) based neural network is then applied as an AI (Artificial Intelligence) tool to distinguish between knock and no-knock conditions. The results show a promising future for CMAC neural networks as a technique to detect knocking in SI engines.","PeriodicalId":105350,"journal":{"name":"2012 International Conference of Robotics and Artificial Intelligence","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference of Robotics and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAI.2012.6413381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Knocking in SI (Spark Ignition) engines is one of the most addressable problems. If not detected in early stages, it causes a severe damage to an SI engine. Various techniques have been proposed so far, in order to detect early knock symptoms. This paper presents a novel approach to detect knocking using technique of Artificial Intelligence. A four stroke, single cylinder engine is simulated using GT Power engine simulation software. Data is generated through simulation for both knock and no-knock conditions. A CMAC (Cerebellar Model Articulation Controller) based neural network is then applied as an AI (Artificial Intelligence) tool to distinguish between knock and no-knock conditions. The results show a promising future for CMAC neural networks as a technique to detect knocking in SI engines.
基于CMAC神经网络的火花点火发动机爆震检测
在SI(火花点火)发动机爆震是最容易解决的问题之一。如果在早期阶段未发现,则会对SI引擎造成严重损坏。到目前为止,已经提出了各种技术,以检测早期的敲击症状。本文提出了一种利用人工智能技术进行敲击检测的新方法。利用GT Power发动机仿真软件对一台四冲程单缸发动机进行了仿真。通过模拟产生了爆震和无爆震两种情况的数据。然后将基于CMAC(小脑模型发音控制器)的神经网络作为AI(人工智能)工具应用于区分撞击和非撞击情况。结果表明,CMAC神经网络作为一种检测发动机爆震的技术具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信