VQ-ViCNet: Strengthen Unique Features Comparison Autoencoder with Embedding Space for Covid-19 Image Classification

Qide Liu, Jielei Chu, Hua Yu, Xinlei Wang, Tianrui Li
{"title":"VQ-ViCNet: Strengthen Unique Features Comparison Autoencoder with Embedding Space for Covid-19 Image Classification","authors":"Qide Liu, Jielei Chu, Hua Yu, Xinlei Wang, Tianrui Li","doi":"10.1109/CCIS57298.2022.10016338","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new novel coronavirus pneumonia image classification model based on the combination of Transformer and convolutional network(VQ-ViCNet), and present a vector quantization feature enhancement module for the inconspicuous characteristics of lung medical image data. This model extracts the local latent layer features of the image through the convolutional network, and learns the deep global features of the image data through the Transformer’s multi-head self attention algorithm. After the calculation of convolution and attention, the features learned by the Transformer Encoder are enhanced by the vector quantization feature enhancement module and able to better complete the final downstream tasks. This model performs better than convolutional architectures, pure attention architectures and generative models on all 6 public datasets.","PeriodicalId":374660,"journal":{"name":"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIS57298.2022.10016338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a new novel coronavirus pneumonia image classification model based on the combination of Transformer and convolutional network(VQ-ViCNet), and present a vector quantization feature enhancement module for the inconspicuous characteristics of lung medical image data. This model extracts the local latent layer features of the image through the convolutional network, and learns the deep global features of the image data through the Transformer’s multi-head self attention algorithm. After the calculation of convolution and attention, the features learned by the Transformer Encoder are enhanced by the vector quantization feature enhancement module and able to better complete the final downstream tasks. This model performs better than convolutional architectures, pure attention architectures and generative models on all 6 public datasets.
VQ-ViCNet:基于嵌入空间的Covid-19图像分类增强独特特征比较自编码器
本文提出了一种基于Transformer和卷积网络相结合的新型冠状病毒肺炎图像分类模型(VQ-ViCNet),并针对肺部医学图像数据的不显著特征提出了矢量量化特征增强模块。该模型通过卷积网络提取图像的局部潜在层特征,并通过Transformer的多头自关注算法学习图像数据的深度全局特征。经过卷积计算和关注后,Transformer Encoder学习到的特征通过矢量量化特征增强模块进行增强,能够更好地完成最终的下游任务。该模型在所有6个公共数据集上的表现都优于卷积架构、纯注意力架构和生成模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信