Deep learning models for atrial fibrillation detection: A review

A. Tihak, S. Konjicija, D. Boskovic
{"title":"Deep learning models for atrial fibrillation detection: A review","authors":"A. Tihak, S. Konjicija, D. Boskovic","doi":"10.1109/TELFOR56187.2022.9983698","DOIUrl":null,"url":null,"abstract":"Detection of atrial fibrillation (AF) presents one of the main tasks of modern cardiology. In the last few years, the deep learning (DL) emerges as the most frequent approach for accomplishing the task. When deciding to apply DL model for AF detection researchers are facing different choices bringing specific advantages but also imposing specific restrictions. The expansion of publishing, and advancements in this field, demand frequent review of the state of the art. The initial set of 370 papers filtered by keywords of interest, were systematically narrowed to 32 papers in focus. The objective of the paper is to present a comprehensive overview of commonly used ECG databases, signal preprocessing techniques, inputs formatting, DL models used, choice of output classes, and performance metrics achieved.","PeriodicalId":277553,"journal":{"name":"2022 30th Telecommunications Forum (TELFOR)","volume":"144 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Telecommunications Forum (TELFOR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELFOR56187.2022.9983698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Detection of atrial fibrillation (AF) presents one of the main tasks of modern cardiology. In the last few years, the deep learning (DL) emerges as the most frequent approach for accomplishing the task. When deciding to apply DL model for AF detection researchers are facing different choices bringing specific advantages but also imposing specific restrictions. The expansion of publishing, and advancements in this field, demand frequent review of the state of the art. The initial set of 370 papers filtered by keywords of interest, were systematically narrowed to 32 papers in focus. The objective of the paper is to present a comprehensive overview of commonly used ECG databases, signal preprocessing techniques, inputs formatting, DL models used, choice of output classes, and performance metrics achieved.
房颤检测的深度学习模型综述
心房颤动(AF)的检测是现代心脏病学的主要任务之一。在过去的几年里,深度学习(DL)成为完成任务的最常用方法。在决定将深度学习模型应用于AF检测时,研究人员面临着不同的选择,带来了特定的优势,也带来了特定的限制。出版的扩展和这一领域的进步,需要经常审查最新的技术。通过感兴趣的关键词筛选,最初的370篇论文被系统地缩小到32篇重点论文。本文的目的是全面概述常用的ECG数据库,信号预处理技术,输入格式,使用的DL模型,输出类的选择以及实现的性能指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信