Briony Mitchell, Lee Harrison, Joanne Ainley, Rodney van der Ree, Kylie Soanes
{"title":"Mitigating the effect of linear infrastructure on arboreal mammals in dense forest: A canopy bridge trial","authors":"Briony Mitchell, Lee Harrison, Joanne Ainley, Rodney van der Ree, Kylie Soanes","doi":"10.1111/emr.12568","DOIUrl":null,"url":null,"abstract":"<p>Roads and other linear infrastructure create treeless gaps that can limit the movement of non-flying, arboreal animals. These negative effects are particularly strong in dense forests, where even narrow infrastructure corridors represent a significant change in habitat structure. Artificial canopy bridges are an increasingly common approach to mitigating the barrier effect of roads and other linear infrastructure on the movement of arboreal mammals; however, questions remain about the success of various designs for different species. Here we conduct an experimental evaluation of the response of a critically endangered possum, Leadbeater's Possum (<i>Gymnobelideus leadbeateri</i>), to two artificial canopy bridge designs: single-rope bridges and ladder bridges. We found that both bridges were used by Leadbeater's Possum and five other species of arboreal marsupial to cross narrow, forestry roads. However, Leadbeater's Possums crossed ladder bridges 13 times more often than the single-rope design (average of 564.5 and 41.75 crossings per design respectively). Radiotelemetry conducted on four Leadbeater's Possums prior to bridge installation detected no road crossings, providing preliminary evidence that the bridges improved cross-road movement. Ladder bridges appear to be the better design choice for a wider range of arboreal marsupials as they were used more frequently, offer greater stability, and provide better predator avoidance than single-rope designs.</p>","PeriodicalId":54325,"journal":{"name":"Ecological Management & Restoration","volume":"23 3","pages":"228-236"},"PeriodicalIF":1.9000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/emr.12568","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Management & Restoration","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/emr.12568","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Roads and other linear infrastructure create treeless gaps that can limit the movement of non-flying, arboreal animals. These negative effects are particularly strong in dense forests, where even narrow infrastructure corridors represent a significant change in habitat structure. Artificial canopy bridges are an increasingly common approach to mitigating the barrier effect of roads and other linear infrastructure on the movement of arboreal mammals; however, questions remain about the success of various designs for different species. Here we conduct an experimental evaluation of the response of a critically endangered possum, Leadbeater's Possum (Gymnobelideus leadbeateri), to two artificial canopy bridge designs: single-rope bridges and ladder bridges. We found that both bridges were used by Leadbeater's Possum and five other species of arboreal marsupial to cross narrow, forestry roads. However, Leadbeater's Possums crossed ladder bridges 13 times more often than the single-rope design (average of 564.5 and 41.75 crossings per design respectively). Radiotelemetry conducted on four Leadbeater's Possums prior to bridge installation detected no road crossings, providing preliminary evidence that the bridges improved cross-road movement. Ladder bridges appear to be the better design choice for a wider range of arboreal marsupials as they were used more frequently, offer greater stability, and provide better predator avoidance than single-rope designs.
期刊介绍:
Ecological Management & Restoration is a peer-reviewed journal with the dual aims of (i) reporting the latest science to assist ecologically appropriate management and restoration actions and (ii) providing a forum for reporting on these actions. Guided by an editorial board made up of researchers and practitioners, EMR seeks features, topical opinion pieces, research reports, short notes and project summaries applicable to Australasian ecosystems to encourage more regionally-appropriate management. Where relevant, contributions should draw on international science and practice and highlight any relevance to the global challenge of integrating biodiversity conservation in a rapidly changing world.
Topic areas:
Improved management and restoration of plant communities, fauna and habitat; coastal, marine and riparian zones; restoration ethics and philosophy; planning; monitoring and assessment; policy and legislation; landscape pattern and design; integrated ecosystems management; socio-economic issues and solutions; techniques and methodology; threatened species; genetic issues; indigenous land management; weeds and feral animal control; landscape arts and aesthetics; education and communication; community involvement.