Current trends in high performance parallel and distributed computing

V. Sunderam
{"title":"Current trends in high performance parallel and distributed computing","authors":"V. Sunderam","doi":"10.1109/IPDPS.2003.1213452","DOIUrl":null,"url":null,"abstract":"Summary form only given. Parallel computing for high performance scientific applications gained widespread adoption and deployment about two decades ago. Computer systems based on shared memory and message passing parallel architectures were soon followed by clusters and loosely coupled workstations, that afforded flexibility and good performance for many applications at a fractional cost of MPP. Such platforms, referred to as parallel distributed computing systems, have evolved considerably and are currently manifested as very sophisticated metacomputing and Grid systems. This paper traces the evolution of loosely coupled systems and highlights specific functional, as well as fundamental, differences between clusters and NOW of yesteryear versus metacomputing Grids of today. In particular, semantic differences between Grids and systems such as PVM and MPICH are explored. In addition, the recent trend in Grid frameworks to move away from conventional parallel programming models to a more service-oriented architecture is discussed. Exemplified by toolkits that follow the OGSA specification, these efforts attempt to unify aspects of Web-service technologies, high performance computing, and distributed systems in order to enable large scale, cross-domain sharing of compute, data, and service resources. The paper also presents specific examples of current metacomputing and Grid systems with respect to the above characteristics, and discusses the relative merits of different approaches.","PeriodicalId":177848,"journal":{"name":"Proceedings International Parallel and Distributed Processing Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Parallel and Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2003.1213452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Summary form only given. Parallel computing for high performance scientific applications gained widespread adoption and deployment about two decades ago. Computer systems based on shared memory and message passing parallel architectures were soon followed by clusters and loosely coupled workstations, that afforded flexibility and good performance for many applications at a fractional cost of MPP. Such platforms, referred to as parallel distributed computing systems, have evolved considerably and are currently manifested as very sophisticated metacomputing and Grid systems. This paper traces the evolution of loosely coupled systems and highlights specific functional, as well as fundamental, differences between clusters and NOW of yesteryear versus metacomputing Grids of today. In particular, semantic differences between Grids and systems such as PVM and MPICH are explored. In addition, the recent trend in Grid frameworks to move away from conventional parallel programming models to a more service-oriented architecture is discussed. Exemplified by toolkits that follow the OGSA specification, these efforts attempt to unify aspects of Web-service technologies, high performance computing, and distributed systems in order to enable large scale, cross-domain sharing of compute, data, and service resources. The paper also presents specific examples of current metacomputing and Grid systems with respect to the above characteristics, and discusses the relative merits of different approaches.
高性能并行和分布式计算的当前趋势
只提供摘要形式。大约在二十年前,高性能科学应用的并行计算得到了广泛的采用和部署。基于共享内存和消息传递并行架构的计算机系统很快被集群和松耦合工作站所取代,它们以MPP的一小部分成本为许多应用程序提供了灵活性和良好的性能。这样的平台,被称为并行分布式计算系统,已经有了相当大的发展,目前表现为非常复杂的元计算和网格系统。本文追溯了松散耦合系统的演变,并强调了过去的集群和NOW与今天的元计算网格之间的特定功能以及基本差异。特别是,网格和系统之间的语义差异,如PVM和MPICH进行了探讨。此外,还讨论了网格框架从传统的并行编程模型转向面向服务的体系结构的最新趋势。以遵循OGSA规范的工具包为例,这些努力试图统一web服务技术、高性能计算和分布式系统的各个方面,以便实现计算、数据和服务资源的大规模跨域共享。本文还针对上述特点给出了当前元计算和网格系统的具体实例,并讨论了不同方法的相对优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信