Hour-ahead wind power prediction for power systems using Hidden Markov Models and Viterbi Algorithm

S. Jafarzadeh, S. Fadali, C. Evrenosoglu, H. Livani
{"title":"Hour-ahead wind power prediction for power systems using Hidden Markov Models and Viterbi Algorithm","authors":"S. Jafarzadeh, S. Fadali, C. Evrenosoglu, H. Livani","doi":"10.1109/PES.2010.5589844","DOIUrl":null,"url":null,"abstract":"This paper presents a new stochastic method for very short-term (1 hour) wind prediction in electrical power systems. The method utilizes Hidden Markov Models (HMM) and the Viterbi Algorithm (VA). Past wind farm power production data are required to develop the HMM model. The accuracy of the predictions improves drastically if hourly weather forecast data are used as pseudo-measurements. Computer simulations using Northwestern weather recordings from the Bonneville Power Administration (BPA) website show good correlation between our predictions and the actual data.","PeriodicalId":177545,"journal":{"name":"IEEE PES General Meeting","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE PES General Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PES.2010.5589844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

This paper presents a new stochastic method for very short-term (1 hour) wind prediction in electrical power systems. The method utilizes Hidden Markov Models (HMM) and the Viterbi Algorithm (VA). Past wind farm power production data are required to develop the HMM model. The accuracy of the predictions improves drastically if hourly weather forecast data are used as pseudo-measurements. Computer simulations using Northwestern weather recordings from the Bonneville Power Administration (BPA) website show good correlation between our predictions and the actual data.
基于隐马尔可夫模型和Viterbi算法的电力系统小时前风电预测
本文提出了一种新的电力系统极短时(1小时)风的随机预报方法。该方法利用隐马尔可夫模型(HMM)和维特比算法(Viterbi Algorithm)。开发HMM模型需要过去风电场的发电数据。如果每小时的天气预报数据被用作伪测量,预测的准确性将大大提高。利用Bonneville电力管理局(BPA)网站上西北地区天气记录的计算机模拟显示,我们的预测与实际数据之间存在良好的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信