GEDS: GPU execution of spatio-temporal queries over spatio-temporal data streams

Jonathan M. Cazalas, R. Guha
{"title":"GEDS: GPU execution of spatio-temporal queries over spatio-temporal data streams","authors":"Jonathan M. Cazalas, R. Guha","doi":"10.3233/JEC-2012-0112","DOIUrl":null,"url":null,"abstract":"Much research exists for the efficient processing of spatio-temporal data streams. However, all methods ultimately rely on an ill-equipped processor [22], namely a CPU, to evaluate concurrent, continuous spatio-temporal queries over these data streams. This paper presents GEDS, a scalable, Graphics Processing Unit GPU-based framework for the evaluation of continuous queries over spatio-temporal data streams. Specifically, GEDS employs the computation sharing and parallel processing paradigms to deliver scalability in the evaluation of continuous, spatio-temporal range queries and continuous, spatio-temporal kNN queries. The GEDS framework utilizes the parallel processing capability of the GPU, a stream processor by trade, to handle the computation required in this application. Experimental evaluation shows promising performance and shows the scalability and efficacy of GEDS in spatio-temporal data streaming environments. Additional performance studies demonstrate that, even in light of the costs associated with memory transfers, the parallel processing power provided by GEDS clearly counters and outweighs any associated costs.","PeriodicalId":422048,"journal":{"name":"J. Embed. Comput.","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Embed. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/JEC-2012-0112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Much research exists for the efficient processing of spatio-temporal data streams. However, all methods ultimately rely on an ill-equipped processor [22], namely a CPU, to evaluate concurrent, continuous spatio-temporal queries over these data streams. This paper presents GEDS, a scalable, Graphics Processing Unit GPU-based framework for the evaluation of continuous queries over spatio-temporal data streams. Specifically, GEDS employs the computation sharing and parallel processing paradigms to deliver scalability in the evaluation of continuous, spatio-temporal range queries and continuous, spatio-temporal kNN queries. The GEDS framework utilizes the parallel processing capability of the GPU, a stream processor by trade, to handle the computation required in this application. Experimental evaluation shows promising performance and shows the scalability and efficacy of GEDS in spatio-temporal data streaming environments. Additional performance studies demonstrate that, even in light of the costs associated with memory transfers, the parallel processing power provided by GEDS clearly counters and outweighs any associated costs.
GEDS:在时空数据流上执行时空查询的GPU
针对时空数据流的高效处理,已有大量的研究。然而,所有的方法最终都依赖于一个装备不良的处理器[22],即CPU,来评估这些数据流上并发的、连续的时空查询。本文介绍了GEDS,一个基于gpu的可扩展图形处理单元框架,用于评估对时空数据流的连续查询。具体来说,GEDS采用计算共享和并行处理范式,在连续、时空范围查询和连续、时空kNN查询的评估中提供可扩展性。GEDS框架利用GPU的并行处理能力来处理该应用程序所需的计算。实验结果表明,该方法具有良好的性能,并显示了该方法在时空数据流环境下的可扩展性和有效性。另外的性能研究表明,即使考虑到与内存传输相关的成本,GEDS提供的并行处理能力也明显抵消并超过了任何相关成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信