A Random Feature Selection Method for Classification of Mammogram Images

I. Faye
{"title":"A Random Feature Selection Method for Classification of Mammogram Images","authors":"I. Faye","doi":"10.1109/ISMS.2012.125","DOIUrl":null,"url":null,"abstract":"This article discusses the use of a random feature selection method for classification of mammogram images using a multi-scale transform. Each image is represented by a vector of coefficients. Subsets of columns are randomly generated and used for classification of a training set. The subsets achieving a predefined performance are kept and pooled in a final set for testing. The method is tested using a set of images provided by the Mammography Image Analysis Society (MIAS) to differentiate normal and abnormal images. In our experiments the classifiers K nearest neighbors (kNN) and Discriminant Analysis (DA) are used with Wavelet transform.","PeriodicalId":200002,"journal":{"name":"2012 Third International Conference on Intelligent Systems Modelling and Simulation","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third International Conference on Intelligent Systems Modelling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMS.2012.125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This article discusses the use of a random feature selection method for classification of mammogram images using a multi-scale transform. Each image is represented by a vector of coefficients. Subsets of columns are randomly generated and used for classification of a training set. The subsets achieving a predefined performance are kept and pooled in a final set for testing. The method is tested using a set of images provided by the Mammography Image Analysis Society (MIAS) to differentiate normal and abnormal images. In our experiments the classifiers K nearest neighbors (kNN) and Discriminant Analysis (DA) are used with Wavelet transform.
乳房x光图像分类的随机特征选择方法
本文讨论了使用多尺度变换的随机特征选择方法对乳房x光图像进行分类。每个图像由一个系数向量表示。列的子集是随机生成的,并用于训练集的分类。实现预定义性能的子集将被保留并汇集在一个最终集中用于测试。该方法使用乳房x线摄影图像分析协会(MIAS)提供的一组图像进行测试,以区分正常和异常图像。在我们的实验中,分类器K最近邻(kNN)和判别分析(DA)与小波变换结合使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信