Flexible DOR routing for virtualization of multicore chips

T. Skeie, F. Sem-Jacobsen, Samuel Rodrigo, J. Flich, D. Bertozzi, S. Medardoni
{"title":"Flexible DOR routing for virtualization of multicore chips","authors":"T. Skeie, F. Sem-Jacobsen, Samuel Rodrigo, J. Flich, D. Bertozzi, S. Medardoni","doi":"10.1109/SOCC.2009.5335673","DOIUrl":null,"url":null,"abstract":"The expected increase in number of cores on a single chip leads to the necessity of high-performance on chip interconnects (NoC). Furthermore, in order to fully utilize the abundance of cores, the chip is expected to support a number of applications running on the chip simultaneously. It is therefore necessary to partition the chip to support numerous applications without any risk of interference between them. The success of this depends on the flexibility of the underlying routing algorithm. This paper presents a flexible routing algorithm based on dimension ordered routing, which supports a large variety of irregular (2-D and 3-D) mesh topologies. The algorithm provides high efficiency at very low additional complexity, as is confirmed by experimental results.","PeriodicalId":389625,"journal":{"name":"2009 International Symposium on System-on-Chip","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Symposium on System-on-Chip","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCC.2009.5335673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

The expected increase in number of cores on a single chip leads to the necessity of high-performance on chip interconnects (NoC). Furthermore, in order to fully utilize the abundance of cores, the chip is expected to support a number of applications running on the chip simultaneously. It is therefore necessary to partition the chip to support numerous applications without any risk of interference between them. The success of this depends on the flexibility of the underlying routing algorithm. This paper presents a flexible routing algorithm based on dimension ordered routing, which supports a large variety of irregular (2-D and 3-D) mesh topologies. The algorithm provides high efficiency at very low additional complexity, as is confirmed by experimental results.
多核芯片虚拟化的灵活DOR路由
单个芯片上内核数量的预期增加导致了高性能片上互连(NoC)的必要性。此外,为了充分利用丰富的内核,该芯片预计将支持多个应用程序同时运行在芯片上。因此,有必要对芯片进行分区,以支持多个应用程序,而不会造成它们之间的任何干扰风险。其成功与否取决于底层路由算法的灵活性。提出了一种基于维序路由的灵活路由算法,该算法支持多种不规则(二维和三维)网格拓扑。实验结果表明,该算法在极低的附加复杂度下具有较高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信