Sensor placement optimization in on-site photovoltaic module inspection robot for fast and robust failure detection

Kyohichiro Tada, Syuhei Kawamoto, N. Yamada, Tetsuya Kimura, M. Iwahashi, Toshiya Tadaumi, Kazuhiko Kato
{"title":"Sensor placement optimization in on-site photovoltaic module inspection robot for fast and robust failure detection","authors":"Kyohichiro Tada, Syuhei Kawamoto, N. Yamada, Tetsuya Kimura, M. Iwahashi, Toshiya Tadaumi, Kazuhiko Kato","doi":"10.1109/PVSC.2015.7355841","DOIUrl":null,"url":null,"abstract":"A robotic crawler for on-site inspection of disconnection failure of crystalline silicon photovoltaic (PV) module was prototyped and tested in actual PV array. Magnetic flux sensors that traced the interconnector lines of the PV module successfully detected disconnection failures. Based on the inspection result by manual inspection, robotic inspection achieved failure predictive value of 90%; however, the test revealed issues such as inspection errors due to line tracing errors of the sensor in the robot. Optimal sensor placement in the robot was investigated aiming for more robust disconnection failure detection.","PeriodicalId":427842,"journal":{"name":"2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2015.7355841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A robotic crawler for on-site inspection of disconnection failure of crystalline silicon photovoltaic (PV) module was prototyped and tested in actual PV array. Magnetic flux sensors that traced the interconnector lines of the PV module successfully detected disconnection failures. Based on the inspection result by manual inspection, robotic inspection achieved failure predictive value of 90%; however, the test revealed issues such as inspection errors due to line tracing errors of the sensor in the robot. Optimal sensor placement in the robot was investigated aiming for more robust disconnection failure detection.
面向快速鲁棒故障检测的光伏组件巡检机器人传感器布局优化
研制了一种用于晶体硅光伏组件断开故障现场检测的机器人履带,并在实际光伏阵列中进行了测试。跟踪光伏组件互连线的磁通传感器成功检测到断开故障。在人工检测结果的基础上,机器人检测实现了90%的故障预测值;但是,在测试中发现了由于传感器的线路跟踪错误而导致的检查误差等问题。研究了传感器在机器人中的最优位置,以实现更鲁棒的断开故障检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信